Talk 3 by Mahan Mj

16 February, 2023

Theorem : We have an exact sequence $1 \to N \to G \to Q \to 1$, and H, G be hyperbolic and $i: H \hookrightarrow G$ has a Cannon-Thurston map.

Observation : The "Limit Set" $\Lambda_H = \partial G$.

Let's say $G = \pi_1(M)$ so M is a closed hyperbolic 3– manifold fibering over the circle with fibre S and $H = \pi_1(S)$. This theorem is due to Cannon and Thurston.

The classical Cannon-Thurston map is $\pi_1 S$ equivariant from $S^1 \twoheadrightarrow S^2$.

 $\mathcal{L}_{\lambda} = \bigcup_{i=-\infty}^{\infty} \lambda_i \text{ where } \lambda_i \text{ is the geodesic joining } at^i \text{ and } bt^i \text{ in } \tilde{S} \times \{i\} \sim \Gamma_H t^i = t^i \Gamma_H.$

Proposition: $\exists C$ such that \mathcal{L}_{λ} is C- quasi-isometric embedded in Γ_G . [This proposition does not use hyperbolicity of G.]

 $\pi_i: \tilde{S} \times \{i\} \to \lambda_i$: collection of nearest point projections of $\tilde{S} \times \{i\}$ onto λ_i with respect to metric on $\tilde{S} \times \{i\}$.

Define $\Pi(x) = \{\Pi_i(x) : x \in \tilde{S} \times \{i\}\}.$

Lemma: $\exists C$ such that Π is a coarse *C*-Lipschitz retraction from Γ_G onto \mathcal{L}_{λ} .

Corollary : Given $\delta > 0, \exists D > 0$ such that if G is δ -hyperbolic then \mathcal{L}_{λ} is D- quasi-convex.

Observation: \exists a proper function $M(N) \to \infty$ as $N \to \infty$ such that $d_H(1,\lambda) \ge N \implies d_G(1,\mathcal{L}_{\lambda}) \ge M(N)$ where $\lambda \subset \mathcal{L}_{\lambda}$. Let μ be the geodesic joining a and b. Then, μ lies in the D-neighbourhood of \mathcal{L}_{λ} .

Assuming the above, $d_H(1,\lambda) \ge N \implies d_G(1,\mu) \ge M(N) - D$ and $(M(N) - D) \rightarrow \infty$ as $N \rightarrow \infty$. Hence, Cannon-Thurston map exists. And, $d_H(1,\lambda) = N$

Since $H \subset G$ is proper $\implies \exists f : N \to \mathbb{N}$ such that $d_G(1, \lambda) \ge f(N) \implies \exists K_0$ such that :

 $\begin{aligned} & d_G(1,\lambda) \geq max(f(N) - K_0, 1) \\ \implies & d_G(1,\lambda_m) \geq max(f(N) - mK_0, m) \\ \implies & d_G(1,\mathcal{L}_\lambda) \geq max(f(N) - iK_0, i)) \geq \frac{f(N)}{K_0 + 1} \text{ for all } i. \end{aligned}$

Proof of lemma: (π -coarse Lipschitz retract) Enough to show that $\exists C > 0$ such that if $x, y \in \Gamma_G, d_G(x, y) = 1$ then $d_G(\pi(x), \pi(y)) \leq C$.

Case 1 : $x, y \in \tilde{S} \times \{i\} = t^i \Gamma_H$ for some *i* and it's clear since we have Γ_H is hyperbolic and $\Gamma_H t^i = t^i \Gamma_H$.

Case 2: y = xt.

To Show That : $d_G(\pi_i(x), \pi_{i+1}(y)) \leq C$. But it's already true since (recall from last lecture) the nearest point projections and quasi-isometries almost commute.

Now, first observe that we needed a way to go up by 1 step that :

(i)
$$[a,b] \subset \Gamma_H \implies [at,bt] \subset \Gamma_H t = t\Gamma_H$$
.

(ii) $\phi_i: \tilde{S} \times \{i\} \to \tilde{S} \times \{i\}$ is a (K, ϵ) - quasi-isometry for all i i.e. $\mathbb{Z} \to G(=\pi_1 M)$ - needed a section. It suffices to show that $\sigma: Q \to G$ is a quasi-isometric section and we have the exact sequence now $1 \to H \to G \to Q \to 1$ and this splits due to the section σ from $Q \to G$ which is guaranteed by a lemma of Mosher.