## $\omega$ Meson Production in pp and p–Pb Collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ in ALICE Hard Probes 2023 - Flash Talk

#### Nicolas Strangmann

strangmann@stud.uni-frankfurt.de

Goethe Universität Frankfurt Institut für Kernphysik

March 31, 2023



Universum und Materie





ALICE

Nicolas Strangmann<sup>1</sup> for the ALICE collaboration



#### **Detector Setup**





Nicolas Strangmann

#### **Reconstruction of** $\omega$ **Mesons**





- Invariant mass reconstruction in  $p_{T}$  intervals
- Three  $\pi^0$  reconstruction techniques: PCM + PCM-EMCal + EMCallow  $p_{T}$ high  $p_{\rm T}$
- Background subtraction, acceptance, efficiency, normalization, branching ratio,...



### $\omega$ Meson Production at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$



# First measurement of $\omega$ mesons in p–Pb collisions at LHC energies

- $\rightarrow~\mbox{Constraints}$  for nPDFs and FFs
- $\rightarrow\,$  Input for direct photon analyses

**p–Pb:**  $2.2 \le p_{\rm T} \le 20 \, {\rm GeV}/c$ 

- Production well described by EPOS LHC
- DPMJET describes shape but underestimates by  $\approx 30\,\%$

**pp:**  $1.8 \le p_{\rm T} \le 16 \, {\rm GeV}/c$ 

- PYTHIA overestimates data up to 40 %
- $\bullet\,$  EPOS LHC overshoots production up to  $100\,\%$





- $\omega/\pi^0$  ratios in pp and p–Pb at  $\sqrt{s_{\scriptscriptstyle\rm NN}}\,{=}\,5.02\,{\rm TeV}$
- Saturate for  $p_{\rm T}\gtrsim$  3 GeV/c
- Production ratios in pp and p-Pb compatible
- In agreement with measurement in pp collisions at  $\sqrt{s} = 13 \text{ TeV}$ 
  - $\Rightarrow \omega/\pi^0$  ratio independent of collision system and energy within uncertainties





$$R_{\rm pPb} = \frac{1}{A_{\rm Pb}} \frac{{\rm d}^2 \sigma_{\rm pPb} / {\rm d} p_{\rm T} {\rm d} y}{{\rm d}^2 \sigma_{\rm pp} / {\rm d} p_{\rm T} {\rm d} y}$$

#### First $R_{\rm pPb}$ of $\omega$ mesons at LHC energies

- Coherent analysis in pp and p−Pb
  → Reduces systematic uncertainties
- Consistent with unity
  - $\Rightarrow$  No nuclear modification visible over measured  $p_{\rm T}$  range
- In agreement with:

• 
$$\pi^0 R_{\text{pPb}}$$
 at  $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ 

•  $\omega R_{dAu}$  at  $\sqrt{s_{NN}} = 200 \, \text{GeV}$ 



## Bottom Line: $\omega$ Mesons in pp and p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$



ALICE Preliminary

 $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}, \omega \rightarrow \pi^+\pi^-\pi^0$  $\bigcirc p - Pb, -1.3 < y < 0.4$ 

EPOS LHC

DPMJET

First measurement of  $\omega$  mesons in p–Pb collisions at LHC energies

 $\rightarrow~\omega/\pi^0$  ratio independent of collision system and energy

 $\rightarrow\,$  First constraints on the nuclear modification factor of the  $\omega$ 



(nbGeV<sup>-2</sup> c<sup>3</sup>)

10

10

10

o pp, |y|<0.8

EPOS LHC

Nicolas Strangmann

 $\omega$  Mesons in pp and p–Pb Collisions with ALICE