Evolution of the initial state in the hotspot model of the proton structure

ARJUN KUMAR Indian Institute of Technology Delhi

विज्ञान एवं प्रौद्योगिकी विभाग DEPARTMENT OF SCIENCE & TECHNOLOGY

MOTIVATION

Initial geometry in the transverse plane : crucial to study small system collisions

MOTIVATION

Initial geometry in the transverse plane : crucial to study small system collisions

How well do we understand the nucleon structure at high energies?

THE PROTON STRUCTURE

The transverse structure at high resolutions

Average spatial gluon distribution

THE PROTON STRUCTURE

Energy dependence of the transverse proton structure

Event-by-event fluctuations in the proton geometry

ACCESSING THE PROTON STRUCTURE IN DIFFRACTION

* The scattering amplitude is given by :

$$\mathscr{A}_{T,L}^{\gamma^*p\to Vp}(x,Q^2,\Delta)\simeq \int d^2r \int d^2b \int dz \times (\Psi^*\Psi_V)_{T,K}$$

- * Impact parameter is Fourier conjugate to the momentum transfer $\Delta = (p' p)_{\perp}$
 - Access to spatial structure ($t = -\Delta^2$)

Factorisation :

- $\Psi(r, Q^2, z)$ is wavefunction for $\gamma^* \to q\bar{q}$
- \bullet $q\bar{q}$ dipole scatters elastically of the target
- $\Psi^V(r, Q^2, z)$ is wavefunction for $q\bar{q} \rightarrow VM$

 $_{T_{I}}(Q^{2}, r, z) \times e^{-ib.\Delta} \times N(b, r, x)$

DIFFRACTIVE VECTOR MESON PRODUCTION

Coherent diffraction

★ *Proton remains intact*

 \star Sensitive to average gluon distribution in the proton

 $\mathscr{A}_{T,L}^{\gamma^*p\to Vp}(x,Q^2,\Delta) \simeq \int d^2r \int d^2b \int dz \times (\Psi^*\Psi_V)_{T,L}(Q^2,r,z) \times e^{-ib.\Delta} \times N(b,r,x,\Omega)$

Incoherent diffraction

★ Proton breaks up

★ Sensitive to fluctuations of gluon distribution

Good, Walker 1960, Miettinen, Pumplin 1978

 $\sigma_{tot} \propto | \langle \mathscr{A} \rangle_{\Omega} |^{2} + (\langle |\mathscr{A}|^{2} \rangle_{\Omega} - | \langle \mathscr{A} \rangle_{\Omega} |^{2})$

Coherent

Incoherent

6

THE DIPOLE-TARGET AMPLITUDE

. the bSat dipole model : $N(b, r, x) = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_C}r^2\alpha_s(\mu^2)xg(x, \mu^2)T_p(b)\right)\right]$. the bNonSat dipole model : $N(b, r, x) = \frac{\pi^2}{N_C} r^2 \alpha_s(\mu^2) x g(x, \mu^2) T_p(b) \Big]$

where $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ and $\mu^2 = \mu_0^2 + \frac{C}{r^2}$

(the parameters are constrained by HERA reduced-cross section data (inclusive) and the scale dependence obtained from DGLAP evolution)

Two models for the spatial proton profile :

a) Smooth proton (assume gaussian proton shape) : $T_p(b) = \frac{1}{2\pi B_c}$

b) Lumpy proton (assume gaussian distributed hotspots with gau

$$\frac{1}{B_G} \exp\left[-\frac{b^2}{2B_G}\right] \quad \text{Kowalski, Teaney 2003, Kowalski, Motyka, Watt 2006}$$

$$\text{ussian shape}: T_p(b) \to \sum_{i=1}^{N_q} T_q(b-b_i) \text{ and } T_q(b) = \frac{1}{2\pi B_q} \exp\left[-\frac{b^2}{2B_q}\right]$$

Mäntysaari, Schenke PRL 117 (2016) 052301

e + p as compared to hera data : Smooth Proton

For a smooth proton there are no fluctuations so the incoherent cross section is zero \rightarrow Lumpy proton

e + p as compared to hera data : LUMPY Proton

Mäntysaari, Schenke PRL 117 (2016) 052301

see Blaizot, Traini 2209.15545 for dipole size fluctuations at low momentum transfer 9

11

A.K,Tobias Toll EPJC 82 (2022) 837

What substructure and size fluctuations would describe the data ?

A.K,Tobias Toll EPJC 82 (2022) 837

What substructure and size fluctuations would describe the data ?

$$T_P(b) \rightarrow \frac{1}{N_q N_{hs} N_{hhs}} \sum_{i=1}^{N_q} \sum_{j=1}^{N_{hs}} \sum_{k=1}^{N_{hs}} T_{hhs}(\mathbf{b} - \mathbf{b_i} - \mathbf{b_j} - \mathbf{b_k})$$

Model	$\mathbf{B_{qc}}$	$\mathbf{B}_{\mathbf{q}}$	$\mathbf{N}_{\mathbf{q}}$	$\mathbf{B_{hs}}$	$\mathbf{N}_{\mathbf{hs}}$	$\mathbf{B}_{\mathbf{hhs}}$	$\mathbf{N_{hhs}}$
bNonSat further refined hotspot	3.2	1.15	3	0.05	10	0.0006	65
bSat further refined hotspot	3.3	1.08	3	0.09	10	0.0006	60

A.K,Tobias Toll EPJC 82 (2022) 837

HOTSPOT MODEL AT LARGE MOMENTUM TRANSFER : INSIGHTS

 \clubsuit Gluon density fixed by longitudinal structure xg(x) (No more splittings as in DGLAP)

The transverse gluon structure

**Appears to become dilute at large* |t|

** Scaling behaviour*

This suggests we can describe the t-spectrum with a linear scale independent (in $\log |t|$) evolution for

the increasing number of hotspots

HOTSPOT MODEL AT LARGE MOMENTUM TRANSFER : INSIGHTS

 \clubsuit Gluon density fixed by longitudinal structure xg(x) (No more splittings as in DGLAP)

The transverse gluon structure *Appears to become dilute at large |t|* Scaling behaviour the increasing number of hotspots

Hotspot evolution model -

• Initial state at $t = t_0$: Hotspot model

$$B_{qc} = 3.1 \ GeV^{-2}$$

 $B_q = 1.25 \ GeV^{-2}$
 $N_q = 3$

Evolution for $t > t_0$

This suggests we can describe the t-spectrum with a linear scale independent (in log |t|) evolution for

HOTSPOT MODEL AT LARGE MOMENTUM TRANSFER : INSIGHTS

• Gluon density fixed by longitudinal structure xg(x) (No more splittings as in DGLAP)

The transverse gluon structure *Appears to become dilute at large |t|* Scaling behaviour the increasing number of hotspots

Hotspot evolution model -

• Two offspring hotspots i, j created at distance $d_{ij} = |b_i - b_j|$ sampled from parent hotspot with widths $B_{i,,j} = \frac{1}{|t|} GeV^{-2}$

Probe & geometry resolution criterion : $d_{ij} > 2\sqrt{B_{i,j}}$

- Reject if not resolved (effective hotspot repulsion)
- Additional sources of fluctuations (number, width, normalisation, repulsion)

This suggests we can describe the t-spectrum with a linear scale independent (in log |t|) evolution for

HOTSPOT EVOLUTION MODEL

A.K,Tobias Toll, in preparation

x [fm]

18

HOTSPOT EVOLUTION MODEL

• Additional sources of fluctuations (number, width, normalisation, repulsion)

A.K,Tobias Toll, in preparation

OUTLOOK

- Currently investigating several models, promising results for whole t-spectrum with addition of only 2 parameters
- •In CGC models, the substructure of nucleon after the geometric hotspot structure is the
- point like color charges at each space point
- •Our model has size evolution from original geometry to hotspots becoming point like
- A better understanding of the proton structure & additional fluctuations required (this work : a step in this direction)

OUTLOOK

- Currently investigating several models, promising results for whole t-spectrum with addition of only 2 parameters
- In CGC models, the substructure of nucleon after the geometric hotspot structure is the
- point like color charges at each space point
- •Our model has size evolution from original geometry to hotspots becoming point like
- A better understanding of the proton structure & its fluctuations required (this work : a step in this direction)

I FIANA YOU

HOTSPOT EVOLUTION MODELS

• Initial state at $t = t_0$: Hotspot model

$$B_{qc} = 3.1 \ GeV^{-2}$$

 $B_q = 1.25 \ GeV^{-2}$
 $N_q = 3$

- a) Divide normalisation in each splitting
- b) Divide normalisation among all hotspots at any t instant

Evolution for $t > t_0$

$$\frac{\mathrm{d}\mathscr{P}_a}{\mathrm{d}t} = \frac{\alpha}{t} \frac{t - t_0}{t} \exp\left[-\alpha \left(\frac{t_0}{t} - \ln\frac{t_0}{t} - 1\right)\right]$$

INCORPORATING THE ENERGY DEPENDENCE

Varying hotspot width (VHW) model: $B_q(x) = B_{q0} x^{\lambda_0}$ Logarithmic model: $B_q(x) = b_0 \ln^2\left(\frac{x_0}{x}\right)$

Varying hotspot number (VHN) model: $N_q(x) = p_0 x^{p_1}(1 + p_2\sqrt{x})$ J. Cepila et al, Phys. Lett. B 766 (2017) 186–191

INCORPORATING THE ENERGY DEPENDENCE

Elastic J/ ψ photoproduction

A.K,Tobias Toll PRD 105 (2022) 114011

GOOD-WALKER PICTURE

Coherent diffraction

- Target remains in the same quantum state after the interaction
- Cross section is determined by the average interaction of states (fock states of incoming virtual photon ; LO: quark-antiquark pair) that diagonalise the scattering matrix with target

Incoherent diffraction

• Sensitive to fluctuations of gluon distribution

$$\sigma_{incoherent} \sim \sum_{f \neq i} |\langle \mathbf{f} | \mathcal{A} | \mathbf{i} \rangle|^{2}$$
$$= \sum_{f} \langle \mathbf{i} | \mathcal{A}^{\dagger} | \mathbf{f} \rangle \langle \mathbf{f} | \mathbf{j} \rangle$$
$$= \langle |\mathcal{A}|^{2} \rangle_{\Omega} - |\langle \mathcal{A} \rangle_{\Omega}|^{2}$$
$$\frac{d\sigma_{total}}{dt} = \frac{1}{16\pi} \langle |\mathcal{A}|^{2}$$

$\mathcal{A}|\mathbf{i} > - \langle \mathbf{i}|\mathcal{A}|\mathbf{i} >^{\dagger} \langle \mathbf{i}|\mathcal{A}|\mathbf{i} >$

 $\frac{d\sigma_{coherent}}{dt} = \frac{1}{16\pi} \left| \left\langle \mathcal{A} \right\rangle \right|$