Heavy Flavour & Quarkonia

(INFN Padova, Italy)

Heavy quarks: probes through the full system history

◆ Large mass (m_c ~1.5 GeV, m_b ~5 GeV) → produced in large virtuality (Q²) processes at the initial stage of the collision with short formation time

 $\Delta t < 1/(2m_c) \sim 0.1 \text{ fm/c} << \tau_0 \sim 1 \text{ fm/c} << \tau_{QGP} \sim 10 \text{ fm/c}$

- Production in QGP expected to be ~negligible (<< 10% at LHC)
- Strong interactions with QGP conserve flavour
- \rightarrow Uniqueness of heavy quarks: "see" full system evolution
- Effective probes of:
 - Presence of deconfined colour charge and QGP temperature
 - > The mechanisms of quark-medium interaction: energy loss (and gain)
 - > The strength of the collective expansion of the system

Outline of this lecture:

Heavy Quarks as messengers from all stages of heavy-ion collisions

Heavy quark production in pp collisions

Heavy-flavour production: pp

proton-proton collisions: factorised perturbative QCD approach

calculable as perturbative series of strong coupling $\alpha_s(\mu_R)$

$pp \rightarrow Q\overline{Q} + X$: partonic cross section

 \blacklozenge Fixed-order massive quark calculations: perturbative expansion in powers of α_s

Fixed-order massive calculation

$$\frac{d\sigma}{dp_T} = A(m)\,\alpha_s^2 + B(m)\,\alpha_s^3 + O(\alpha_s^4) \qquad B(m) = \beta(m) + \gamma(m)\log(\mu/m) \\ \mu \approx p_T$$

NLO: Mangano, Nason, Ridolfi (1992) NNLO: Czakon et al. (2013), Catani et al. (2020) \rightarrow state-of-the-art for total cross section, but not p_{τ} differential

Fixed-order next-to-leading log (FONLL)

$$\frac{d\sigma}{dp_T} = A(m)\alpha_s^2 + B(m)\alpha_s^3 + G(m, p_T)\left[\alpha_s^2\sum_{i=2}^{\infty}a_i[\alpha_s\log(\mu/m)]^i + \alpha_s^3\sum_{i=1}^{\infty}b_i[\alpha_s\log(\mu/m)]^i\right]$$

FONLL: Cacciari, Nason, Frixione, Mangano (1998)

 \rightarrow more accurate than NLO at high $p_{\rm T}$

 Other approaches: Variable Flavour Number Scheme (Kniehl et al.), k_T-factorization (Maciula, Szczurek)

HP2023 Student Day, GSI, 26.03.2023

D and B production in pp collisions: data vs theory

INFŃ

- Measurements from 0 to ~50-100 GeV/c for both charm and beauty hadrons
- Systematic comparison with FONLL calculations: charm data close to upper FONLL limit; beauty data close(r) to central value
- Important for QGP studies: HQs are well-calibrated probes; most models of HQ-QGP interactions use FONLL for the baseline production

The big surprise of HF baryons at the LHC

 Baryon fraction (Λ_c and Ξ_c) at low p_T much larger than predicted by string fragmentation models tuned on e+e⁻ data, e.g. Λ_c/D⁰ ~0.6, Ξ_c/D⁰ ~0.3

 Qualitatively described by models with baryon junctions (PYTHIA 8) or with hadronization via coalescence

JEN

The big surprise of HF baryons at the LHC

- Baryon fraction (Λ_c and Ξ_c) at low p_T much larger than predicted by string fragmentation models tuned on e+e⁻ data, e.g. Λ_c/D⁰ ~0.6, Ξ_c/D⁰ ~0.3
- Qualitatively described by models with baryon junctions (PYTHIA 8) or with hadronization via coalescence
- Large baryon/meson ratio also measured in the beauty sector

IFN

Measurement of charm cross section needs baryons!

- Recent measurements (at mid-rapidity) that use the sum of observed mesons (D⁰, D⁺, D_s) and baryons (Λ_c and Ξ_c) give a cross section ~30% larger than early measurements based on mesons and e⁺e⁻ fragmentation fractions
- Forward rapidity charm baryon measurements needed to obtain total cross section

Heavy quarks as probes of the initial state

Parton densities in nuclei at small x_{Biorken}

- Initial state: high-p nucleus = set of gluons with p^g distribution according to PDF g(x_{Bjorken},Q²), with x=p^g/p^N and Q² the scale of the process (~ 1/"area" of the gluon)
- HERA DIS (ep) data: strong rise of xg(x,Q²) at low-x & low-Q²
- New (unknown) regime of QCD: when gluons are numerous enough (low-x) & extended enough (low-Q²) to overlap → Limits the low-x rise, lead to saturation?

Parton densities in nuclei at small x_{Biorken}

- Initial state: high-p nucleus = set of gluons with p^g distribution according to PDF g(x_{Bjorken},Q²), with x=p^g/p^N and Q² the scale of the process (~ 1/"area" of the gluon)
- HERA DIS (ep) data: strong rise of xg(x,Q²) at low-x & low-Q²
- New (unknown) regime of QCD: when gluons are numerous enough (low-x) & extended enough (low-Q²) to overlap → Limits the low-x rise, lead to saturation?

Nuclear PDFs

Effective reduction of the parton flux at small x(shadowing) \rightarrow can described with nuclear-modified PDFs

- ◆ Shadowing \approx small-x gluon "fusion": $g_{x1} + g_{x2} \rightarrow g_{x1+x2}$
- Shadowing factor for PDFs: $xG_A(x,Q^2) = A xg(x,Q^2) R_G^A(x,Q^2)$

see e.g. Eskola et al. Eur.Phys.J.C 82 (2022) 5, 413

Limited data at small-x (esp. before the LHC era) → large uncertainties and large differences between approaches → uncertainty in initial HQ production in AA

Initial-state effects on charm in proton-nucleus

Cesar Luiz da Silva, QCD Challenges 2023 workshop

 nPDFs with shadowing describe D-meson p-Pb 5 TeV data: reduction of forward y (small x) and possible enhancement at backward y (large x)

- Precise LHCb fwd-y data constrain nPDFs down to small x
- However, the p-Pb charm data may be affected by final-state effects as well

 $R_{\rm pPb}$

5

JFN

Large magnetic field (B) in heavy-ion collisions

- B up to 10¹⁴ T produced by crossing positive ions, and rapidly decreasing after crossing
- Expected to induce asymmetry vs rapidity or event plane for particle with opposite charge
- Charm quarks produced at t < 0.1 fm/c → sensitive to the highest field values

HP2023 Student Day, GSI, 26.03.2023

VFN

EVENT-PLANF

Rapidity asymmetry: $v_1(D) - v_1(anti-D)$

3 orders of magnitude larger slopes w.r.t. charged hadrons

IFN

J/ψ polarization w.r.t. event plane

Quarkonium melting due to colour screening

- QGP signature proposed by Matsui and Satz, 1986 Matsui, Satz, PLB178 (1986) 416
- In the plasma phase the interaction potential is expected to be screened beyond the Debye length λ_D (analogous to e.m. Debye screening)

$$V(r) = -\frac{\alpha}{r} + kr \qquad \qquad \bigvee \qquad V(r) = -\frac{\alpha}{r} e^{-r/\lambda_D}$$

• Charmonium (cc) and bottonium (bb) states with $r > \lambda_D$ will not bind; their production will be suppressed

Quarkonium melting due to colour screening

- QGP signature proposed by Matsui and Satz, 1986
 Matsui, Satz, PLB178 (1986) 416
- In the plasma phase the interaction potential is expected to be screened beyond the Debye length λ_D (analogous to e.m. Debye screening)

• In-medium potential calculated in lattice QCD:

Lattice QCD: e.g. Bazavov et al. 2013

$J\!/\psi$ suppression at the SPS

- Suppression observed by the NA50 and NA60 experiments in Pb-Pb and In-In at the SPS ($\sqrt{s_{NN}} \sim 17$ GeV)
- "Measured / Expected" J/ψ yield vs. centrality drops below unity towards more central collisions

Sequential quarkonium melting due to colour screening

Debye screening length λ_D rapidly decreases when T > T_c (T/T_c > 1):

Digal,Petrecki,Satz PRD 64(2001) 0940150

Sequential quarkonium melting due to colour screening **CINFN**

Debye screening length λ_D rapidly decreases when T > T_c (T/T_c > 1):

Sequential quarkonium melting due to colour screening **CINFN**

Debye screening length λ_D rapidly decreases when T > T_c (T/T_c > 1):

Sequential quarkonium melting due to colour screening **CINFN**

Debye screening length λ_D rapidly decreases when T > T_c (T/T_c > 1):

NFN Sequential quarkonium melting due to colour screening

Debye screening length λ_D rapidly decreases when T > T_c (T/T_c > 1):

Courtesy R. Arnald

Bottonium sequential suppression: Y(IS), Y(2S), Y(3S)

Binding energy: ~1.1 ~0.5 ~0.2 GeV

- Y(2S) 4x more suppressed than Y(1S); Y(3S) 2x more suppressed than Y(2S)
- Consistent with sequential suppression, ordered with binding energy (or radius of bound state)

Towards QGP temperature from bottonium suppression?

ALICE, A journey through QCD, arXiv:2211.04384

Two model calculations, that describe Y suppression at the LHC, implement colour screening in hydro medium with initial T₀ ~ 550-650 MeV

Charmonium regeneration

- Uncorrelated c quarks from the medium could bind during QGP evolution and/or at hadronization (chemical freeze-out) and form charmonium
- At LHC, about 100 \overline{cc} pairs in central collisions:

$N_{c\overline{c}} = \frac{\sigma_{c\overline{c}}^{pp}}{\sigma_{inel}^{pp}} \cdot N_{coll} \sim \frac{\sigma_{c\overline{c}}^{pp}}{65 \text{ mb}} \cdot 1600$					
In most central A-A collisions	SPS 20 GeV	RHIC 200 Gev	LHC 2.76 TeV		
N _{ccbar} /event	~0.1	~10	~100		

P. Braun-Munzinger and J. Stachel, Phys. Lett. B490(2000) 196 R. Thews et al, Phys. ReV. C63 (2001) 054905

To first approximation:

$$\frac{dN_{J/\psi}}{dy} \propto \left(\frac{dN_{c\bar{c}}}{dy}\right)^2$$

J/ ψ suppression + regeneration: SPS, RHIC, LHC (ψF)

• Suppression expected from increasing temperature is countered by the rapid increase of regeneration: $\left(\frac{dN_{c\bar{c}}}{dv}\right)^2$ increases by ~10⁶ from SPS to LHC

• J/ ψ R_{AA} ~ 1 at mid-rapidity in central collisions at LHC

J/ ψ regeneration at LHC: p_T and rapidity dependence

- J/ ψ suppression reduced at low p_T
 - cc regeneration balancing the dissociation in the QGP

- At low p_T, modification decreases from forward to central rapidity
 - Reflects rapidity dependence of the cc cross section → regeneration probability

J/ ψ regeneration at LHC: p_T and rapidity dependence

- J/ψ suppression reduced at low p_T
 - cc regeneration balancing the dissociation in the QGP

- At low p_T, modification decreases from forward to central rapidity
 - Reflects rapidity dependence of the cc cross section → regeneration probability

Heavy quark interactions: energy loss

The parton palette and the properties of QCD energy loss

Parton Energy Loss by

medium-induced gluon radiation

collisions with medium gluons

$$\Delta E(\varepsilon_{medium}; C_R, m, L)$$

 C_R : colour charge dep. *m*: mass dependence

See e.g.:

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

Radiative energy loss: colour charge dependence

path length *L*

Example: BDMPS-Z formalism $\hat{q} = \frac{\langle k_T^2 \rangle}{\lambda}$ transport coefficient Radiated-gluon energy distrib.:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega} \propto \alpha_{s} C_{R} \sqrt{\frac{\hat{q}L^{2}}{\omega}}$$

 C_R = Casimir coupling factor: 4/3 for q, 3 for g

 \rightarrow Colour charge dependence of radiative energy loss

$$\Delta E_g > \Delta E_{c\approx q}$$

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

HP2023 Student Day, GSI, 26.03.2023

Radiative energy loss: mass dependence

- In vacuum, gluon radiation suppressed at $\theta < m_Q/E_Q$
 - \rightarrow "dead cone" effect

• Dead cone implies lower energy loss:

- energy distribution @dI/d@ of radiated gluons suppressed by angle-dependent factor
- suppresses high-*w* tail

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{HEAVY} = \omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{LIGHT} \times \left(1 + \left(\frac{m_{\mathrm{Q}}}{E_{\mathrm{Q}}}\right)^2 \frac{1}{\theta^2}\right)^2$$

$$\Delta E_c > \Delta E_b$$

Dokshitzer, Khoze, Troyan, JPG 17 (1991) 1602. Dokshitzer and Kharzeev, PLB 519 (2001) 199. HP2023 Student Day, GSI, 26.03.2023

Mass dependence in collisional energy loss

Example: Langevin formalism

• Langevin equation gives momentum (**p**) evolution vs. time (*t*) for a HQ with mass m_Q :

From energy loss to R_{AA}

 $R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{p_T} / dp_T}$

$$\Delta E_g > \Delta E_{c\approx q} > \Delta E_b$$

- ➢ No trivial relation between ∆E and R_{AA}
- Need to account for different steepness of partonic p_T spectrum, different hadronization mechanisms, effects of radial flow (system collective expansion)

$$R^{D}_{AA} < R^{B}_{AA}$$
$$R^{\pi}_{AA} \le R^{D}_{AA}$$

 \rightarrow Difficult to observe

e.g.: A.Buzzatti et al., NPA904-905 (2013) 779c

Beauty vs charm R_{AA}

• Beauty R_{AA} > Charm R_{AA} at $p_T \sim 5-15$ GeV/c

IFN

Beauty vs charm R_{AA}

• Beauty R_{AA} > Charm R_{AA} at $p_T \sim 5-15$ GeV/c

Described by models with smaller elastic coupling + dead cone for gluon radiation

contain a soft D⁰ meson Inclusive θ (rad) θ (rad) $n(k_{T})$ $n(k_{T})$ $5 < p_{T int}^{ch} < 50 \text{ GeV}/c$ 2 < p_ < 36 GeV/c

 $|\eta| | < 0.5$

 $5 < p_{T,int}^{ch} < 50 \text{ GeV/}c$

side-band subtracted

2.4 2.6 2.8

3

 $ln(1/\theta)$

 $ln(1/\theta)$

22

in charged jets, anti-k_, R=0.4

 $\theta = m_0/E$

Lund

plane:

 $ln(k_T)$

Meanwhile: dead cone 'seen' in D-jets in pp

ALICE Data

PYTHIA 8

PYTHIA 8 LQ / inclusive

no dead-cone limit

Heavy quark interactions: diffusion, thermalization?, hadronization

Example: Langevin formalism

Langevin equation gives momentum (**p**) evolution vs. time (t) for a HQ with mass m_Q :

$$d\mathbf{p} = -\Gamma(p) \mathbf{p} dt + \sqrt{2D(\mathbf{p} + d\mathbf{p})} dt \rho$$
Loss term \rightarrow energy loss Gain term

♦ If a low-p heavy quark is embedded in an expanding QGP, the gain term dp :

- > Increases significantly its momentum \rightarrow radial flow (i.e. increase of $\langle p_T \rangle$)
- > Imparts azimuthal asymmetry \rightarrow anisotropic flow (v₂, and higher harmonics)

Heavy quark diffusion coefficient

Example: Langevin formalism

• Langevin equation gives momentum (**p**) evolution vs. time (*t*) for a HQ with mass m_Q : $d\mathbf{p} = -\Gamma(p) \mathbf{p} dt + \sqrt{2D(\mathbf{p} + d\mathbf{p}) dt} \rho$

Diffusion coefficient D: one of the characterizing properties of the QGP

Open charm and open beauty elliptic flow

- Prompt D mesons (charm) have large v₂ at LHC (and RHIC)
- Non-prompt D mesons (beauty) have v₂>0
- Low p_T: indication of 0 < beauty v₂ < charm v₂
 → Smaller thermalization for beauty?
- High p_T : 0 < beauty $v_2 \sim$ charm v_2
 - \rightarrow v₂ from path-length dependence of energy loss?

Open and hidden HF v_2

• J/ψ have clear $v_2 > 0$

> confirms formation by regeneration from flowing c and \overline{c} quarks

- No indication of Y(1S) flow
 - consistent with large Y mass and small bb regeneration probability
- At intermediate p_T , $J/\psi < D < pions$
- What is the role of the hadronization mechanism?

π: JHEP1809(2018)006 b-D: arXiv:2005.11131 Y(J/ψ: arXiv:2005.14518

b→e: arXiv:2005.11130 Y(1S): PRL123(2019)192301

HQ hadronization in heavy-ion collisions ?

- Even in high-energy pp collisions HQ hadronization differs from e+e⁻-like fragmentation
- High parton density in QGP favours hadronization by recombination (or coalescence) of quarks

$$\vec{p}_{hadron} = \sum \vec{p}_{quark}$$

- Recombination dominant at low p for light quarks
- It affects the momentum distributions, enhances the baryon/meson ratios at intermediate p_T, and the azimuthal anisotropy of hadrons

$$v_{n,hadron} = \sum v_{n,quark}$$

What about HQs in HI?

a) 6 GeV/c pion from 1x 10 GeV/c quark fragmentation
b) 6 GeV/c pion from 2x 3 GeV/c quark recombination
c) 6 GeV/c proton from 3x 2 GeV/c quark recombination

Strange-HF mesons

Expected to be enhanced, because QGP is strangeness-rich

D_s/D⁰ larger in central Pb-Pb w.r.t pp measurements ALICE, arXiv:2110.10006

Hint of RAA(Bs) > RAA(B)

CMS, arxiv:1810.03022 ALICE, arXiv:2204.10386

 $\Lambda_{\rm c}/{\rm D^0}$ larger in central and semi-central Pb-Pb than in pp at intermediate $p_{\rm T}$

Described by models with different implementations of quark recombination

RHIC energy: $\Lambda_c/D^0 \sim 1$ in Au-Au at low p_T (3-6 GeV/c), but no pp measurement

STAR, arXiv:1910.1462

HF hadronization + HF diffusion

Understanding HF hadronization in a high-density partonic environment

- \rightarrow fundamental, and one of the handles on the emergence of collectivity in QCD
- \rightarrow instrumental to measuring the QGP diffusion coefficient with HF flow

D-meson R_{AA} and v₂ only described when including recombination

• Estimates of D_s vs T using the inputs of models that describe the LHC data

> E.g. latest ALICE estimate: $1.5 < 2\pi D_s(T)T < 4.5$ at T_c \rightarrow $\tau_{charm} = 3-9$ fm/c

 Next steps: D_s and other parameters from global Bayesian analyses of light and heavy flavour observables

Outlook: (some) future goals and challenges

HP2023 Student Day, GSI, 26.03.2023

54

HP2023 Student Day, GSI, 26.03.2023

55

Outlook: experiment \rightarrow faster and "sharper"

- Main frontiers to enhance HF physics reach:
 - rate capabilities & acceptance
 - tracking precision
 - \rightarrow high precision, reduce backgrounds, access to rarer processes

- x10-100 in "statistics" at RHIC and LHC
 - Increased interaction rate at both machines
 - Faster readout and larger acceptance
- Monolithic pixel trackers bring DCA resolution to 20-30 μm at p_T=1 GeV/c
 - Pioneered by STAR; key development by ALICE, will be adopted also by sPHENIX, CBM, NA61, NA60+

Thanks for your attention! Questions?

Have an interesting and productive Hard Probes 2023!

Don't miss these plenary talks!

Monday PM

Thursday AM

Thursday PM

Open heavy flavors: Theory	Santosh Kumar Das
Cranach-Saal, Stadthalle	15:15 - 15:40
Open heavy flavors: Experiment	Zaida Conesa del Valle
Cranach-Saal, Stadthalle	15:40 - 16:05
Quarkonia: Theory	Miguel Angel Escobedo Espinosa
Cranach-Saal, Stadthalle	11:10 - 11:35
Quarkonia: Experiment	Krista Smith
Cranach-Saal, Stadthalle	11:35 - 12:00
Nuclear PDFs: new results from global fits	Tomas Jezo
Cranach-Saal, Stadthalle	12:00 - 12:25
Hadronization mechanism (via heavy-flavor hadrons): Experiment	Andrea Rossi
Cranach-Saal, Stadthalle	14:25 - 14:45
Hadronization mechanism (via heavy-flavor hadrons): Theory	Andrea Beraudo
Cranach-Saal, Stadthalle	14:45 - 15:05
Highlights, open questions and perspectives: Heavy flavors and quarkonia	Andrea Dubla
Cranach-Saal, Stadthalle	11:15 - 11:40

FN

EXTRA SLIDES

arXiv:1906.03322

0.7

0+ 000.4

0.3

0.1

+ +⁺00.2 CMS

PbPb

0.5 PbPb

0.6 | y| < 1.0

PbPb 44 μb⁻¹, pp 38 nb⁻¹ (5.02 TeV)

Data

PYTHIA8 + CR

16

18

20

14

- EPJC78 (2018) 348 ---- arXiv:1902.08889

pp

ALI-PREL-321702

ALICE: hint of larger Λ_c/D^0 in Pb-Pb w.r.t. to pp for $4 < p_T < 6$ GeV/c CMS: similar Λ_c/D^0 in Pb-Pb and pp at high pT

12

p_{_} (GeV/c)

10

STAR shows higher value for $\Lambda_c/D^0 \sim 1$ in Au-Au at low p_T (3-6 GeV/c), but no pp comparison

- •D-meson tagged jets *R*AA consistent with Dmeson *R*AA
- Hint of larger suppression for low pτ D-jets than high pτ charged jets
- Broader radial distribution of D meson with respect to the jet axis in Pb-Pb?

Experimental outlook

NA61/SHINE (2022), NA60+ (>2029?) @ SPS

- Ongoing upgrade: pixel tracker, TPC readout at 1 kHz
- Pb-Pb at $\sqrt{s_{NN}}$ = 5 and 17 GeV in 2022-24
- Main goals: open charm cross section with ~10% precision, critical fluctuations with higher precision

- Proposal for a high-rate dimuon spectrometer with a silicon pixel tracker
 - > Eol submitted to SPSC, Lol in prep.
- 10 MHz Pb-Pb at $\sqrt{s_{NN}} = 5-17$ GeV
- Main goals: caloric curve with thermal dimuons, characterize χ-symmetry restoration, charmonia and open charm (~1% precision)

INFŃ

sPHENIX @ RHIC (2023)

- Compact and hermetic design
- Continuous readout at 15 kHz
 - ~100B Au-Au events per year

Focus on:

- Fully reconstructed jets, with HCAL
- Bottomonium states
- > HF mesons and baryons, with MAPS

ALICE in Run 3 (2022) and ideas for Run 4 (2029)

- Upgrade proposal for LS3 (2026): replace inner barrel with a trulycylindrical ultralight one: x3 less material
 - > e.g. improves by a factor 4 the precision for the Λ_c
 - > More HF studies ongoing: Λ_b , B_s, search for "super-nuclei"

LHCb (2022), ATLAS and CMS (2029) Upgrades

- LHCb: LS2 upgrade:
 - Tracker with higher granularity
 → Pb-Pb 30-100%
 - New storage cell for fixedtarget collisions at up to x100 higher rates (p ... Ne ... Xe)
- ATLAS and CMS: major Phase-2 upgrades for HL-LHC
 - > Extension of tracker acceptance to $|\eta|$ <4
 - ➢ Precise timing detectors for pile-up rejection → t.o.f. PID
 - ATLAS $2.5 < |\eta| < 5$
 - \circ CMS $|\eta| < 4$

HF performance outlook: energy loss and transport

INFN

HF performance outlook: hadronisation of HQs

Some examples, many more studies available and ongoing

INFŃ

- Fast, ultra-thin detector with precise tracking and timing
 - Exploit full AA lumi
 - Ultimate performance for (multi-)HF, thermal radiation and soft hadrons (<50 MeV)</p>
- All-pixel tracking and PID detector |η|<4
- Timing layers σ~20 ps for t.o.f. ID of hadrons and low-p electrons
- RICH, Muon ID, ECal
- Insertable converter layer for photon detection
- Innermost layers inside the beam pipe

arXiv:2211.02491