

Study of multiplicity-dependent charmonia production in p+p collisions at PHENIX

> Jongho Oh and Sanghoon Lim for the PHENIX collaboration

Motivation

- Inclusive J/ψ yield increases with particle multiplicity in p+p collisions at 13 TeV and 200 GeV
 - Similar multiplicity dependence at two energies
 - \rightarrow Multiparton interaction is important
 - for J/ψ production in both energies

 J/ψ and charged particle multiplicity at mid-rapidity \Rightarrow Charged tracks of the decay product are included

p_ > 0 GeV/c

p_>4 GeV/c

○ p_ > 0 GeV/c

 $(dN^{MB}/d\eta)/<dN^{MB}/d\eta>$

p > 1.5 GeV/c

PHENIX muon spectroscopy

PHENIX muon arms are composed of Forward Silicon Vertex Tracker, Muon Tracker, and Muon Identifiers to measure hadron/muon tracks at forward rapidity region

Forward Silicon Vertex Tracker

- 4 stations of silicon strip detector
- precise measurement of the radial direction
- of track trajectory at forward rapidity
- charged particle multiplicity

- in the charged particle multiplicity \rightarrow Multiplicity dependence is possibly affected depending on $dN_{\rm ch}/d\eta$ values
- In PHENIX, multiplicity can be measured in various regions
 → Detailed correlation between J/ψ production and underlying events can be investigated

20

- Relative suppression of $\psi(2S)$ than J/ψ becomes stronger as the multiplicity density increases in p/³He+A collisions Final-state effects
- The study can be extended even in p+p collisions →The system size is small
- but almost independent of the multiplicity

Muon Tracker

- 3 stations of cathode strip chamber
- momentum measurements of charged tracks

Muon Identifier

- 5 layers of 2 planes of Iraocci tube chambers and steel absorber
- hadron/muon separation

<u>Charmonia measurement</u>

- At least one MuTr-FVTX matching is required to separate J/ψ and $\psi(2S)$
- Signal shape: Crystal ball function and 2nd Gaussian function
- Combinatorial background: Mixed events normalized with like-sign
- Correlated background: Modified Hagedorn function based on the measurements of correlated dimuons Phys. Rev. D 99, 072003 (2019)

South armNorth arm $-2.2 < \eta < -1.2$ $1.2 < \eta < 2.4$

<u>Results</u> Multiplicity-dependent J/ψ production

J/ψ at forward rapidity and multiplicity at mid-rapidity
 Increasing yield as charged particle multiplicity becomes larger

- J/ψ at forward rapidity and multiplicity at backward rapidity A similar trend in the results with the multiplicity at mid-rapidity
- J/ψ and multiplicity at the same rapidity (forward rapidity) Multiplicity without subtraction of muons from J/ψ
 → More steeply increasing than other results Multiplicity with subtraction of muons from J/ψ
 → Weaker multiplicity-dependence and similar trend with other results
- Comparison with PYTHIA8
- A better agreement with the Detroit tune for RHIC energies than the Monash tune

Comparison with other results

• J/ψ and multiplicity at mid-rapidity

A similar multiplicity dependence is observed in 200 GeV and 13 TeV

Tracks from J/ψ are included in both results, but more significant impact in 200 GeV due to smaller multiplicity $(dN_{\rm ch}/d\eta$ in 13 TeV is about x3 larger than 200 GeV) <u>Outlook</u>

- PHENIX results without subtraction of muons from J/ψ → A similar multiplicity dependence with the LHC results
- After the subtraction of muons from J/ψ Significantly lower multiplicity dependence than STAR results (same collision energy without subtraction) ALICE results (higher collision energy without subtraction)
- At 200 GeV where $dN_{\rm ch}/d\eta$ is comparable with 2 (tracks from J/ψ), considering the muon contribution is very important to interpret the multiplicity dependence
- Multiparton interaction is important for J/ψ production for both energies
- Multiplicity-dependent J/ψ and $\psi(2S)$ ratio is ongoing to study final-state effects in p+p collisions
- Two PYTHIA tunes show different multiplicity dependence in the J/ψ and ψ(2S) ratio
 Another check of the underlying event description