

Measurement of Ξ_c^{o} via the semileptonic decay channel $\Xi_c^{o} \rightarrow e^+ \Xi^- v$ in pp and p-Pb collisions with ALICE

Sanghoon Lim*, Jeongsu Bok, and Chong Kim for the ALICE Collaboration

p - Pb

5.02

600 M

Introduction

- Physics motivation
 - Heavy-flavor hadron production: Factorization of parton distribution function \otimes heavy quark production cross-section \otimes fragmentation function
 - Meson-to-baryon ratios: Sensitive to fragmentation functions
 - Charm-quark fragmentation functions in pp collisions:

ALICE detectors and Dataset

ALICE detectors used in this analysis

- Total charm cross-section described by pQCD calculations a.
- Higher ratio of baryon fraction than in e⁺e⁻ or ep b.
- Clear multiplicity dependence in the Λ_c^+/D^0 ratio С.
- Question on the universality of the fragmentation function d.
- Ξ_{c} measurements provide additional information

- **Inner Tracking System** for tracking and vertexing
- **Time Projection Chamber** for tracking and PID
- Time-Of-Flight detector for PID
- **V0** for trigger and multiplicity classification

Previous studies

- Ξ_c^0 measurements via both hadronic and semileptonic decay channels in minimum-bias pp collisions
- Significantly larger Ξ_c^0/D^0 ratio than PYTHIA8 CR tunes
- The Catania model including both coalescence and fragmentation provides a better description of data

Phys. Rev. Lett. 127, 272001 (2021)

Analysis Status

- Target decay mode
 - $\Xi_{c}^{0} \rightarrow e^{+}\Xi^{-}\nu_{e} \rightarrow e^{+}(\pi^{-}\Lambda)\nu_{e} \rightarrow e^{+}(\pi^{-}(p\pi^{-}))\nu_{e}$ and its charge conjugate

Analysis strategy

- Reconstruct electrons and Ξ candidates
- Offline selection:
 - a. Event classification by multiplicity
 - b. Selection on the reconstructed e and Ξ
 - by various criteria (e.g., Ξ topology)
 - c. Combinatorial of e and Ξ pairs

Recent development of the analysis procedure

- **Combinatorial background estimation**
 - Like-sign pairs in the same events: a. contribution of correlated eE pairs from c-cbar would be different from that in unlike-sign pairs
 - Background $e\Xi$ pairs using event mixing technique, b. normalized at high mass region ($e\Xi$ mass>2.5 GeV/ c^2)
- Separation of different semileptonic decay modes
 - a. 3-body decay mode: $\Xi_c^0 \rightarrow e^+ \Xi^- v_e$
 - 4-body decay mode including Ξ^* decaying to Ξ and π : b. smaller eE pair mass than the 3-body decay mode
 - Template fit using PYTHIA8 simulations С. to obtain the relative contributions

Raw Ξ_c^0 yield extraction 3.

a. Signal: invariant-mass distribution of unlike-sign pairs ($e^{\pm}\Xi^{+}$) after background subtraction b. Background: from like-sign ($e^{\pm}\Xi^{\pm}$) or event mixing pairs

- Template fit to distinguish different decay modes 4. (details in the analysis status section)
- Unfolding from e Ξ pair p_{T} to $\Xi_{c}^{0} p_{T}$ 5.
- Efficiency correction exploiting 6. **PYTHIA8 + GEANT3 simulations**
- Subtraction of b-hadron contribution
- Results: Ξ_c^0 production cross-section, 8. Nuclear modification factor, baryon-to-meson (Ξ_c^0/D^0) ratio

	$M(e\Xi)$ (GeV/ c^2)	$M(e\Xi)$ (GeV/ c^2)	<i>М</i> (еΞ) (GeV/ <i>c</i> ²)
ALI-PERF-537986	ALI-PERF-537983		ALI-SIMUL-537989
	eE mass distributions for MB and HM collisions in pp collisions		eE mass distributions for 3- and 4-body decay modes in PYTHIA8

Outlook

- Analysis of Ξ_c^{0} via the semileptonic channel $\Xi_c^{0} \rightarrow e^+ \Xi^- v$ is ongoing in pp (\sqrt{s} =13 TeV) and p-Pb ($\sqrt{s_{NN}}$ =5.02 TeV) collisions
 - The analysis procedure is well established and will be completed in the upcoming months
 - Multiplicity-dependent Ξ_c^0/D^0 ratio in pp collisions and nuclear modification faction in p-Pb collisions will be measured for a detailed investigation of charm hadron fragmentation