

Flow and transverse momentum fluctuations in Pb+Pb and Xe+Xe collisions with ATLAS: assessing the initial condition of the QGP

Ivan Gnesi on behalf of the ATLAS Heavy Ion group

Fermi Research Center - Rome (Italy), INFN LNF - Frascati (Italy), UniTo - Turin (Italy) and CERN - Geneva (Switzerland)

Physics Motivations

- 1. Correlations between flow harmonics v_n for n=2,3,4 and mean transverse momentum p_T in ¹²⁹Xe+¹²⁹Xe and ²⁰⁸Pb+²⁰⁸Pb collisions at $\sqrt{s_{NN}}$ =5.44 TeV and 5.02 TeV are potentially sensitive to the shape and size of the initial geometry, nuclear deformation and initial momentum anisotropy.
- 2. v_n - p_T correlations show strong dependencies on centrality, harmonic number n, p_T and pseudorapidity range.
- 3. Current models qualitatively describe the overall centrality and system-dependent trends but fail to quantitatively reproduce all features of the data: therefore a correlator is a good observable to investigate the available models.
- 4. In central collisions, where models generally show good agreement, the v₂-p₇ correlations are sensitive to the triaxiality of the quadruple defor**mation**. This work shows strong evidence for a triaxial deformation of the 129 Xe nucleus from high-energy heavy-ion collisions.

The ρ_n Correlator

 $\sqrt{var(v_n^2)c_k}$

Origin of v_n - p_T Correlations

In Relativistic Viscous Hydrodynamics the rapid expansion converts **spatial** anisotropy in the initial state into momentum anisotropy in the **final state**; therefore eccentricity vectors ϵ_n show good correlation with n-order azimuthal flow vectors V_n . [Int. J. Mod. Phys. A 28 (2013) 1340011], [Phys. Rev. C 85 (2012) 024908]

The size of the overlap region also leads to fluctuations in the **radial flow**, reflected by the average transverse momentum of particles in each event. Smaller transverse size in the initial state are expected to have a stronger radial expansion and therefore a larger p_T . [Phys. Rev. C 85 (2012) 044910], [Phys. Rev. C 85

Nuclei with density distribution as $R(\Theta, \Phi) = R_0(1 + \beta [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}])$ are less deformed. β : magnitude of deformation, $\gamma = (0, 60, 30)$ angle for prolate, oblate and max triaxiality $(2r_2=r_1+r_3)$ cases. [Atom. Data Nucl. Data Tabl. 109-110 (2016) 1] For Even-even nuclei (²⁰⁸Pb) shape is measured by low energy spectroscopy while for odd nuclei like ¹²⁹Xe models are applied; in addition, the ρ_n measurement allows to study their deformation.

 v_2 and ρ_2 follow the parametric form $v_2^2 \simeq a + b\beta^2$ and $\rho_2 \simeq a' + b' \cos{(3\gamma)}\beta^3$, where

a, a' are the lowest at high centrality and b and b' represent the deformation

(together with β) and they do not depend on centrality. Therefore in **central col**-

lision are expected the strongest effects of deformation on flows. [Phys.]

 \Rightarrow Dynamical Correlations between v_n and p_T in the final state are expected.

The Subevent Method

(2012) 044910]

The event is divided into **three rapidity ranges**, a, b, and c. **4-particle correlators** are constructed by choosing two particles from a and one particle each from b and c.

Dijets contributions are **suppressed**, since they can only pro-

duce particles in two subevents. Cumulants can be based on two subevents as well. In this case, two particles each are chosen from b and c, which effec- η = -2.5 tively suppresses contributions (b) from intrajet correlations, but not from interjet correlations.

The HI ATLAS detector and triggers

The trigger system: level-1 (L1) + high-level trigger (HLT)

- Inner Detector (ID) \Rightarrow charged particles at $|\eta| < 2.5$ [Si Pixel, Si Microstrip (SCT), straw-tube transition-radiation tracker (2 T axial field)]
- Forward Calorimeters (FCal) \Rightarrow 3 layers, longitudinal in shower depth, at $3.2 < |\eta| < 4.9$
- Zero-Degree Calorimeters (ZDC) $\Rightarrow \pm 140$ m from IP, neutrons and photons at $|\eta| > 8.3$

The experimental centrality definition based on the final-state particle multiplicity N_{rec} is smeared by fluctuations in the particle production process.

A better centrality estimator is the total transverse energy ΣE_T in FCal at $3.2 < |\eta| < 4.9$.

Nrec is applied at mid rapidity $\eta < 2.5$ but is less performing

R = 443 mSCT R = 371 R = 299 r

R = 122.5 mm R = 88.5 mm

Data set and Event/Track Selection

ATLAS datasets and Track Reconstruction:

- Xe+Xe: 3 μ b⁻¹ of minimum-bias at $\sqrt{S_{NN}}$ [=5.44 TeV (2017) (**p**_T > **0.3 GeV** and **|η| < 2.5**)
- **Pb+Pb**: **22** μ **b**⁻¹ min. bias + **470** μ **b**⁻¹ ultracentral at $\sqrt{s_{NN}}$ =5.02 TeV (2015) (**p**_T **> 0.5 GeV** and **|η| < 2.5**)

Further requirements:

- primary vertex at |z|<100 mm + closest track to vertex < 2.5 mm
- Pb+Pb pile up suppression: neutrons in ZDC and correlation with N_{rec}
- Centrality using ΣE_T (>42 GeV in Pb+Pb and >30 GeV in Xe+Xe)

Analysis Procedure and Subevents η ranges

Lett. B 784 (2018) 82], [Phys. Rev. C 100 (2019) 044902]

 COV_n , $Var(v_n^2)$ and C_k measurement is done in 3 steps:

1. calculated in each event as the **average over all combinations** among particles in ranges of η and a p_T

2. averaged over events with comparable multiplicity ΣE_T

3. **recombined** in broader multiplicity ranges of the event ensemble to obtain statistically more precise results

Method	Default η selection	Alternative η selection
Standard	$ \eta < 2.5$	$ \eta < 1$
Two-subevent	$0.75 < -\eta_a, \eta_c < 2.5$	$0.35 < -\eta_a, \eta_c < 1$
Three-subevent	$0.75 < -\eta_a, \eta_c < 2.5, \eta_b < 0.5$	$0.35 < -\eta_a, \eta_c < 1, \eta_b < 0.3$
Combined-subevent	average of two-subevent and three-subevent results	
$p_{\rm T}$ selection for Xe+Xe		$p_{\rm T}$ selection for Pb+Pb
$0.3 < p_{\rm T} < 2 \text{ GeV}, 0.5 < p_{\rm T} < 5 \text{ GeV}, 0.5 < p_{\rm T} < 2 \text{ GeV}$		$0.5 < p_{\rm T} < 5$ GeV, $0.5 < p_{\rm T} < 2$ GeV

Event weights $w(\eta, \Phi, p_T) = d(\Phi, \eta)/\epsilon(\eta, p_T)$: *d* accounts for nonuniformities in the azimuthal acceptance.

Analysis of Results and Discussion

Centrality and Nonflow suppression

Reduction of ρ_2 from standard method in left panel, to the two-subevent method in middle and to three-subevent method in right is a robust proof of suppression of the nonflow correlations. In middle and right plots:

- 1. ρ_2 values for the narrow $|\eta| < 1$ range are much larger (red and black) than for $|\eta| < 2.5$, therefore $|\eta| < 1$ still have significant nonflow contributions;
- 2. differences between the ρ_2 values from the two event-activity estimators are large for both η ranges, reflecting the impact of centrality fluctuations;
- 3. No clear evidence for initial-state momentum anisotropy emerged.

P_T-correlated effects

For both Pb+Pb and Xe+Xe the correlators are higher for wider P_T ranges (0.5-5 GeV/C²). In Xe+Xe, a lower P_T limit to 0.3 GeV/ c^2 do not alter the correlations (black and red points). This is because bulk particles (low Pt) follows mainly hydrodinamics behaviour, without bringing new effects

Testing Models

At high centrality the nuclear deformations are important and all models show agreement with data. In noncentral collisions, they show significant differences. Trento underestimates ρ_2 in all p_T ranges and overestimate ρ_3 .

v-USPhydro and Trajectum underestimate both ρ_2 and ρ_3 values in noncentral collisions. IP-Glasma+MUSIC does not reproduce the experimental data.

to the overall ρ_n definition.

¹²⁹Xe Triaxiality

Due to the large ¹²⁹Xe quadrupole deformation, $\beta_{Xe} \sim 0.2$, the ρ_2 is sensitive to the triaxiality γ_{Xe} . This is confirmed in Trento model by ρ_2 differences as a function of centrality for different γ_{Xe} . However p_T dependence is absent in Trento model.

To cancel out the p_T dependence, Xe+Xe and Pb+Pb p_2 ratios are compared with Trento model. At high centrality, where the predicted ρ_2 show triaxiality dependence, the $\gamma_{Xe} \sim 30$ is favored (black line). Therefore, flow measurements in central collisions can constrain the nucleus quadrupole deformation.

ivan.gnesi@cern.ch

HP2023

Poster Number: 129