Highlights, <u>open questions and perspectives</u>: nPDFs, saturation and electroweak probes

Jamal Jalilian-Marian

Baruch College and the City University of New York Graduate Center

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions Aschaffenburg, Germany, 26-31 March 2023

The charge:

".....<u>we do not envisage a complete/comprehensive</u> <u>summary of the conference</u>,, but rather a critical view on selected (and personal bias is understood here) aspects and a view on perspectives....."

High energy heavy ion collisions

slide from Travis Dore (Tues.)

How to evolve from the non-equilibrium initial state to a hydrodynamic description?

start with simpler systems

High p_t particle production: pp collisions

collinear factorization: separation of soft (long distance) and hard (short distance)

pQCD: the standard paradigm

bulk of QCD phenomena happens at low p_t (small x)

How about nuclear (pA) collisions?

universality — predictive power

$$\frac{d\sigma^{A_1A_2 \to h X}}{d^2 p_t \, dy} ? f_{A1}(x_1) \otimes f_{A2}(x_2) \otimes \hat{\sigma} \otimes D^h(z) + \cdots \cdots \underset{\text{power corrections}}{\text{power corrections}}$$

nPDFs: shadowing, anti-shadowing,....

partonic cross section: multiple scatterings from the target

Fragmentation functions: vacuum vs in-medium Nuclear collision \rightarrow nuclear PDFs slide from Aleksander Kusina (Wed.)

Cross-sections in nuclear collisions are modified

Can we translate this modifications into **universal nuclear PDFs**?

$$\frac{d^2\sigma}{dxdQ^2} = \sum_{i=q,\bar{q},g} \int_x^1 \frac{dz}{z} f_i^A(z,\mu) \, d\hat{\sigma}_{il\to l'X}\Big(\frac{x}{z},\frac{Q}{\mu}\Big) + \mathcal{O}\Big(\frac{\Lambda_{\rm QCD}^2}{Q^2}\Big)$$

Gribov-Glauber model of nuclear shadowing: multiple hadronic scattering

talk by Vadim Guzey (Thurs.)

shadowing as destructive interference between multiple scattering amplitudes nuclear parton distributions at initial scale Q_0 DGLAP evolution of distribution functions with hard scale Q^2

Frankfurt, Guzey, Strikman, Phys. Rep. 512 (2012) 255

slide from Tomas Jezo (Thurs.)

nPDFs

Global analyses of nPDFs

Adapted from a slide by I. Schienbein

talk by Sara Sellam (Tues.)

nPDFs

LHCb's impact on nPDF fits

LHCb measurements have a significant impact on nPDFs fits.

nPDFs vs cold matter e-loss

arXiv:2003.06337, Arleo, Cougoulic, Peigne

talk by Tobie Avez (Wed.)

colorless initial/final states?

nPDFs

What's the QCD dynamics responsible for nuclear modification (shadowing)? perturbative (parton d.o.f., linear/non-linear evolution in x) non-perturbative (hadron d.o.f., Gribov-Galuber) leading twist vs higher twist?

How far can we push collinear factorization here?

A-enhanced higher twist contributions?

Can one calculate corrections systematically (twist-4 contributions)?

new parameters: can lattice, LaMET, help?

How about final state or initial-final state interference effects? <u>cold matter eloss?</u>....

Are we disregarding rich QCD dynamics by insisting on collinear factorization?

HERA: rise of the partons

Resolving the nucleus/hadron: Regge-Gribov limit 1

radiated gluons have the same size $(1/Q^2)$ - the number of partons increase due to the increased longitudinal phase space

<u>hadron becomes a dense system of gluons:</u> Feynman's concept of a quasi-free parton is not useful

one can reach the same dense state in a <u>nucleus at not so small x</u>

QCD at high energy/small x: gluon saturation

tremendous progress made toward precision universal d.o.f.: dipole (Tr V V⁺), quadrupole (Tr V V⁺V V⁺) in DIS, pA F. Domingues, C. Marquet, B. Xiao, F. Yuan, PRD83 (2011) 105005

CGC at RHIC

Single and double inclusive hadron production in dA collisions

Dumitru, Hayashigaki, JJM, NPA770 (2006) 57

Albacete, Marquet, PRL105 (2010) 162301

related talk by Paul Caucal on Thursday

Back to back hadron production in pA collisions: forward rapidity

STAR collaboration(2021) arXiv:2111.10396

A challenge for Gribov-Galuber model of shadowing!

CGC at NLO

Ingredients of N^pLO small-x calculation

Universal non linear $N^{p}LL BK/JIMWLK$ evolution equation

- Process independent, resum $\alpha_s^{p+n} \ln^n(1/x_{\rm Bj})$ to all orders.
- Recents results on spin dependent small-x evolution, NLL JIMWLK with massive quarks.

See Cougoulic, Kovchegov, Tarasov, Tawabutr, 2204.11898 and Dai, Lublinsky, 2203.13695

Process dependent N^p LO impact factors

• Non-exhaustive list of recent NLO results in eA or ep

- Dijet+photon in DIS Roy, Venugopalan, 1911.04530
- Inclusive dijets PC, Salazar, Venugopalan, 2108.06347, inclusive dihadrons Bergabo, Jalilian-Marian, 2207.03606
- Structure functions for massive quarks. Beuf, Lappi, Paatelainen, 2112.03158
- Exclusive heavy-vector production. Mäntysaari, Penttala 2204.14031
- Diffractive structure functions. Beuf, Hänninen, Lappi, Mulian, Mäntysaari, 2206.13161
- Topic not covered here: sub-eikonal corrections suppressed by powers of x_{Bj} .

See e.g. Altinoluk, Beuf, Czajka, Tymowska, 2212.10484, Altinoluk, Armesto, Beuf, 2303.12691

CGC at NLO

Single inclusive hadron production in pA collisions: LHCb

Shi, Wang, Wei and Xiao, arXiv:2112.06975

Ultra-peripheral collisions: coherent diffraction

CGC: promising signatures

2+1 diffractive jet production

- Hard P_⊥ ≫ Q_s dijet + 1 semi-hard gluon jet K_⊥ ~ Q_s gives the dominant contribution to dijet diffractive events at large P_⊥.
- An $\mathcal{O}(\alpha_s)$ effect but leading twist!
- Strong sensitivity to saturation: effective gg dipole interacts strongly with the target.

lancu, Mueller, Triantafyllopoulos, 2112.06353

talk by Paul Caucal (Thurs.)

CGC: glasma

Fig. by Ipp, Muller, arXiv:1703.00017

talk by Dana Avramescu (Tues.)

Overview talk by Kirill Boguslavski (Mon.)

need high p_t (large x) partons in CGC!

Not all is well!

cold matter eloss in forward rapidity region? partially coherent, fully coherent,... high density state but no (significant) evolution? classical CGC?

small x is an extreme approximation finite energy/large x corrections?

Single inclusive pion production in pp at RHIC

collinear factorization

CGC

GSV, PLB603 (2004) 173-183

DHJ, NPA765 (2006) 57-70

unifying saturation with high p_t (large x) physics?

kinematics of saturation: where is saturation applicable? structure functions at all Q² high p_t particle production, forward-backward rapidity correlations cold matter eloss, early time eloss in heavy ion collisions, spin asym.,....

kinematics of double inclusive hadron production

Aschenauer et al. arXiv:1708.01527

Fig. courtesy of Xiaoxuan Chu

pQCD limit (large x: gluon PDF X partonic cross section):

V = U = 1

The FoCal project

FoCal-E: high-granularity Si-W sampling sandwich calorimeter for photons and π^0

FoCal-H: conventional metal-scintillator sampling calorimeter for photon isolation and jets

Main physics goal: Universal structure of matter at small-x

Observables

- π^0 and other neutral mesons
- Isolated (direct) photons
- Jets
- J/ψ, Y (in UPC)
- Z, W
- Correlations

Letter-of-Intent: CERN-LHCC-2020-009

slide courtesy of P. Jacobs

SUMMARY

Exploring QCD dynamics via high energy collisions for 20+ years pQCD: collinear factorization at asymptotically high p_t CGC at asymptotically small x each has its own advantages and shortcomings

can they be unified?

New/upgraded detectors at RHIC

LHC will run for another ~20 years

Electron-Ion Collider is coming!

$\rm F_L$ at HERA, arXiv:1710.05935

Dipoles at large N_c : BK equation

$$\begin{split} \frac{d}{dy} \mathbf{T}(\mathbf{x_t} - \mathbf{y_t}) &= \frac{\bar{\alpha}_s}{2\pi} \int d^2 \mathbf{z_t} \frac{(\mathbf{x_t} - \mathbf{y_t})^2}{(\mathbf{x_t} - \mathbf{z_t})^2 (\mathbf{y_t} - \mathbf{z_t})^2} \left[\mathbf{T}(\mathbf{x_t} - \mathbf{z_t}) + \mathbf{T}(\mathbf{z_t} - \mathbf{y_t}) - \mathbf{T}(\mathbf{x_t} - \mathbf{y_t}) - \mathbf{T}(\mathbf{x_t} - \mathbf{z_t}) \mathbf{T}(\mathbf{z_t} - \mathbf{y_t}) \right] \\ \mathbf{T}(\mathbf{x_t}, \mathbf{y_t}) &\equiv \mathbf{1} - \mathbf{S}(\mathbf{x_t}, \mathbf{y_t}) = \frac{1}{N_c} \mathrm{Tr} \left\langle \mathbf{1} - \mathbf{V}(\mathbf{x_t}) \mathbf{V}^{\dagger}(\mathbf{y_t}) \right\rangle \end{split}$$

Rummukainen-Weigert, NPA739 (2004) 183 NLO: Balitsky-Kovchegov-Weigert-Gardi-Chirilli (2007-2008)