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None exists!！



QGP and Jet Modifications
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 Jets are powerful probes to QGP


• QGP:  AA collisions at  with different centralities


• Jets (dijets, /Z-jets ): initiator’s flavor, energy, position, 
direction and jet substructures developed at early stages


• Jet-medium interactions


Towards more precise probes & jet tomography with ML
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γ
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How can jet modification be quantified?

modified jetjetIdeally…

How do jets from an identical hard process differ in vacuum and in 
medium?

A-Ap-p

Jasmine Brewer (MIT)

Hypethetical twin jets in vacuum/medium

By J. Brewer

By D. Pablos



Various ML tools for jets
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Many tools suit a lot for jets


A tremendous amount of applications in HEP arXiv:2102.02770
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Outline

 Jet Momentum Reconstruction


 Classification of Quark/Gluon Jets 


 Classification of Quenched Jets


 Prediction of Jet Energy Loss


 Prediction of Jet Production Positions
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Jet Momentum Reconstruction

Pythia jets embedded in a toy thermal model


Linear Regression, Random Forest (decision trees), 
Neural Network


Enable low-  large-  jet measurementspT R
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Jet Momentum Reconstruction in ALICE
ALICE: arxiv.2303.00592

See talk by C. Pliatskas, 28 March, Tuesday, 9:00
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Jet  correction with ML- VS. area-based approach in ALICE


More precise jet  resolution with the ML-based method for low-  jets at large R


However, this ML method could be biased by the fragmentation pattern (Pythia-like jets for 
training)

pT

pT pT



Reminder: Receiver operating characteristic (ROC) curve



Classification of Quark/Gluon Jets
Jewel jets in pp and AA


DNN with Jet mass, two radial moments 
including the girth, , and the pixel 
multiplicity


CNN on jet images (η,φ)


DNN with Telescoping deconstruction 
framework exploiting subjet kinematics – , 
mass


“Quark gluon discrimination performance 
worsens in heavy ion jets due to significant 
soft event activity affecting the soft jet 
substructure”

pD
T

pT

Y.-T. Chien, R. K. Elayavalli, arXiv:1803.03589
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Classification of Quark/Gluon Jets

Same qualitative characteristics: more soft particles at large angles within the jet cone


The quenching smears the difference of substructures of quark/gluon jets


The greater the energy loss is, the more difficult it is to classify

YLD, D. Pablos and K. Tywoniuk, PoS(PANIC2021)224

12 See also F. A. Dreyer, G. Soyez and A. Takacs, JHEP08(2022)177 

More quenching

More quenching

Quark

Gluon

Hybrid model



Classification of Quenched Jets
L. Apolinário, N.F. Castro, M. C. Romão, et al., JHEP11(2021)219
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Jewel vacuum VS medium -
jets


CNN on jet image


RNN on Lund 


DNN on global ( , )


Which observables contain 
most discriminating power?

Z

pT,jet nconst



Identification of Quenched Jets

JEWEL vs PYTHIA8


Long short-term memory (LSTM) network 
on Lund primary branch


Features: z, q,  …


Calibration of LSTM output is explored, 
claimed to be deterministic 

kT

L. Liu, J. Velkovska, M. Verweij, arXiv:2206.01628

!!

Branches
Feature Branch

Groomed

Jet Border

Poster by J. Velkovska and Y. Wu, 28 March, Tuesday, 18:15
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Identification of Quenched Jets

Select Top 40% quenched jets to pronounce the quenching effects in observables and Lund plane

L. Liu, J. Velkovska, M. Verweij, arXiv:2206.01628

Poster by J. Velkovska and Y. Wu, 28 March, Tuesday, 18:15
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The information content of jet quenching and machine learning 
assisted observable design

JEWEL vs PYTHIA8


IRC-unsafe information contains 
significant discriminating power


Complete set of jet substructures — 
performance saturation: how many 
observables does one need to 
measure? 


Observables design


Measure to background subtraction 
algorithm 

Y. S. Lai, J. Mulligan, M. Płoskoń, et al., JHEP10(2022)011

Talk by M. Płoskoń, 28 March, Tuesday, 16:30
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Prediction of Jet Energy Loss

Regression analysis of jet energy loss between the twin jets


Jet quenching increases the number of soft particles at large angles


Well predicted for a wide range of χ

YLD, D. Pablos and K. Tywoniuk, JHEP03(2021)206
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Interpretability!

Hybrid model



Genuine Configuration Profile 
YLD, D. Pablos and K. Tywoniuk, PHYS. REV. LETT. 128, 012301 (2022)

Initial Energy Selection (IES) “removes” final state 
interactions (selection bias), since we record “all” jets


IES provides access to the genuine jet creation point (path 
length) distribution and possible initial-state jet anisotropy

18



Towards jet tomography

Strong correlation between  and 


Selecting jets with different  will naturally 
select jets that traversed different   


Great potential to make tomographic 
application!

L χ

χ
L
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Prediction of Jet Production Positions

Point cloud network employs hadrons’ momentum, mass and /jet info to predict jet production position (x,y)


Select jets by their positions and directions to have a larger yields of soft hadron from medium response and 
induced radiation

γ
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Jet py > 0

Network 
selection

Actual 
distribution

Talk by X-N WANG, 28 March, Tuesday, 10:00



Diffusion Wake signal amplified by DL jet tomography
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=200-250 GeV/c, >100 GeV/c, 

=1-2 GeV/c in 0-10% Pb+Pb @ 5.02 TeV
pγ

T pjet
T

ph
T

Talk by X-N WANG, 28 March, Tuesday, 10:00



Summary

 Various neural networks with different representations of jet 
data are applicable in the study of jet quenching (e.g., DNN, 
CNN, RNN, RecNN, Point Cloud, Graph NN…)


 Jet  reconstruction in ALICE —First application on exp. data


 Classifications (q/g jets, quenched or not)


 Regressions (energy loss, production points)

pT
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Outlook
Generalizability to other MC quenching models?  Model independence


Interpretability? Connection with theory?


Applicability to more realistic environment: fluctuating/correlated background?


Better performance from state-of-the-art neural networks? Quantum machine learning?


Novel applications: 


Extract traversed length? 


Unfold vacuum twin jet properties apart from jet energy? Apple to apple comparison


With unsupervised ways…
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