Recent developments in lattice and effective field theory for hard probes

Rasmus Larsen

University of Stavanger

March 31. 2023

Physical Motivation on the lattice

The quark-antiquark potential at T > 0

- Real time spectral function for quark-antiquark systems extracted from quarks moving in imaginary time on the lattice
 - Zero T subtraction: Rasmus Larsen, Peter Petreczky, Johannes Heinrich Weber
 - Pade fit: Gaurang Parkar, Alexander Rothkopf

The Heavy Quark Momentum Diffusion Coefficient κ

- In effective theory to leading order in 1/m, current current correlator, related to the heavy quark momentum diffusion coefficient κ, can be expressed in a color-Electric correlators, now done with dynamical quarks
 - Luis Altenkort, Hai-Tao Shu, Olaf Kaczmarek, Peter Petreczky

Heavy Quakonium at T > 0

- NRQCD used to extract behavior above critical temperature, signal improved by using sources with finite size
 - Extended sources: Stefan Meinel, Rasmus Larsen, Swagato Mukherjee, Peter Petreczky
 - Bayesian BR: Seyong Kim, Alexander Rothkopf

• All results in this talk uses that real time spectral functions $\rho(\omega)$ can be expressed in an imaginary time formulation on the lattice

$$C(\tau) = \int_{-\infty}^{\infty} \rho(\omega) K(\omega, \tau) d\omega$$
(1)

• $C(\tau)$ is the correlation on the lattice

•
$$\rho(\omega)$$
 is the real time spectral function

- $K(\omega, \tau)$ is a kernel that transforms spectral information into correlation information
- For real time $K = \exp(i\omega t)$
- For imaginary time non-periodic effective-theories measurements $K = \exp(-\omega \tau)$
- For imaginary time periodic measurements $K = \frac{\cosh(\omega \tau \omega/(2T))}{\sinh(\omega/(2T))}$

Lattice QCD

• The gauge fields A_{μ} are on the lattice exponentiated to a link $U_{\mu} = \exp(iaA_{\mu})$ • Fermions ψ lives on the lattice points, and $U_{\mu}(x)$ lives between the points connecting the fermions at $x + \mu$ to x

$$Z = \int DU_{\mu} D\psi D\bar{\psi} \exp(-S_E(U_{\mu}, \psi, \bar{\psi}))$$

• Electric and magnetic interactions $F_{\mu\nu}$ comes from links going around in a circle in the μ , ν plane

The quark-antiquark potential at T > 0

• The real time spectral function $ho(\omega,r)$ is related to the correlation of 2 wilson lines

$$C(\tau, r) = \langle Tr(W(\tau, 0)W(\tau, r)^{\dagger}) \rangle = \int \rho(\omega, r) \exp(-\omega\tau) d\omega$$
(3)

Rasmus Larsen (University of Stavanger)

Extracting $\rho(\omega, r)$

- Extracting $\rho(\omega,r)$ from $C(\tau,r)$ is an inversion problem
- We will focus on the results from 2 techniques at finite temperature T

Pade fit

- Fit rational function to fourier transform of correlator $C(\tau,r) \rightarrow C(\omega_n,r)$
- Rotate $i\omega_n \to \omega$ to obtain spectral function

Zero temperature subtraction

- Find continuum at zero temperature and subtract it from finite T correlator
- Fit simple spectral function to subtracted correlator to extract position and width

Energy from Wilson Line Correlator

- Real part of potential E or Ω found from peak position of spectral function $ho(\omega,r)$
- Almost no change in position of peak E [arxiv:2110.11659]
- New results on larger lattices 96^3 included for zero temperature subtraction

- No Screening in the potential observed
- Distortions observed on large lattice at small r due to the use of smearing

Width from Wilson Line Correlator

- Width Γ of spectral function $\rho(\omega, r)$ dependent on shape of model
- Consistency seems to be in the cumulants of the correlator where the second cumulant $\langle \omega^2 \rangle \langle \omega \rangle^2$ controls the width

- The heavy quark momentum diffusion coefficient κ controls the size of random kicks to quarks coming from interactions with the medium
- For an effective theory where M >> T and Λ_{QCD} integrating out the heavy quarks, gives κ from a color-electric correlator, instead of a current current correlator

$$G_E(\tau) = -\sum_{i=1}^{3} \frac{\langle ReTr[U(1/T,\tau)E_i(\tau,0)U(\tau,0)E_i(0,0)]\rangle}{3ReTr[U(1/T,0)]} = \int_0^{\infty} \rho(\omega) \frac{\cosh(\omega\tau - \omega/(2T))}{\sinh(\omega/(2T))} \frac{d\omega}{\pi}$$
(4)

- $U(\tau_1, \tau_2)$ is the temporal wilson line between τ_1 and τ_2 that connects the color-electric E_i measurements.
- κ related to color-electric correlators spectral function at $\lim_{\omega\to 0}\rho(\omega)/\omega$
- $\lim_{\omega \to 0} \rho(\omega)/\omega$ hard to obtain due to inversion problem

Extracting the signal from noisy lattices

- κ extracted from 2+1 simulations on fine lattices 96^3N_{τ} by Altenkort et. al. [Arxiv:2302.08501]
- light quarks slightly heavy $m_s/m_l = 5$, physical corresponds to ratio of 27.
- See talk by Olaf Kaczmarek "The heavy quark diffusion coefficient from 2+1 flavor lattice QCD"

- Noisy correlator $G_E(\tau)$ extrapolated to the continuum and zero smearing
- 3 different ansatz used to interpolate low ω and high ω regions

$$\rho_{low} = \kappa \omega / (2T)$$

 $\rho_{high} = K \rho_{pert,LO}$

Diffusion coefficient

- Results for $D_s = 2T^2/\kappa$ shows lower than quenched behavior
- 14 N_f=2+1 QCD ⊷ N_f=0 QCD ⊷ ALICE 👾 12 10 Bayesian • $6D_s$ is the mean distance squared 2 πT D_s 8 traveled by unit time T-Matrix results updated 6 compared to figure in paper, R. T-matrix Rapp et al. [arxiv:1612.09318][arxiv:1711.03282] 4 pert. NLO 2 AdS/CFT 0 2 2.2 2.4 2.6 1.2 1.4 1.6 1.8 T/T

Heavy Quarkonium at T > 0

- We want to learn about heavy quarkoniums behavior in high temperature mediums
- We do this by creating a quarkonium state at au=0 and then propagate it though imaginary time

$$\int d^3x < O(\tau, x)O^{\dagger}(0, 0) > = C(\tau)$$
$$\int_{-\infty}^{\infty} \rho(\omega) \exp(-\omega\tau) d\omega =$$
(5)

- We are interested in the zero momentum state, so we integrate over space
- Bottomonia too heavy for first principle lattice calculations
- Non Relativistic QCD used, since it only cares about energy differences

Extended Sources

- Sources that approximate the shape of the state, improves signal
- Source are calculated from discretized schroedinger equation with confining potential that reproduces zero temperature spectrum

Effect of extended sources

- Plateaus of the effective mass M_{eff} – > Mass state exists in $\rho(\omega)$

$$M_{eff} = \frac{1}{a} \log[C(\tau)/C(\tau+a)] = -\frac{\partial}{\partial_{\tau}} \log(C(\tau)) \quad (7)$$

Mass of Bottomonia states at finite temperature

Extended Sources Result

- Results from extended sources consistent with no shift to peak position
- Larsen et al[arXiv:1910.07374]

Bayesian Method

- Results from Bayesian BR method shows a decrease up to 40 MeV for ground state
- Seyong Kim et al [arxiv:1808.08781]

Spectral Width

Extended Sources Result

- Results from extended sources shows that the larger the state, the larger the width
- Larsen et al[arXiv:1910.07374]
- Extended sources allows for projection onto excited states of Υ and χ_b

Summary

• Lattice calculations are able to constrain parameters for effective models from first principle calculations

- The heavy quark momentum diffusion coefficient has been calculated with dynamical quarks
- Recent studies of lattice QCD with dynamical fermions indicate no screening in static quark-antiquark potential for $T>T_c$
- · Large spectral width, indicating strong nonlinear interactions with the medium

Continuum Subtracted S-wave

• Extended sources greatly reduces continuum contribution

- Small au behavior similar at T=0 and $T\neq 0$
- Extract continuum $C_{high}(\tau)$ from T = 0 results
- 0 Corresponds to mass of η_b at T = 0 M eV.

$$C(\tau) = Ae^{-M\tau} + C_{high}(\tau)$$

$$C_{sub}(\tau, T) = C(\tau, T) - C_{high}(\tau)$$
(8)

Finite Temperature Subtracted Effective Mass

- Drop in effective mass as $\tau \to 1/T$
- Linear behavior at small to mid range au

T = 251 MeV

• Information in correlation function is thus

$$C_{sub}(\tau,T) \sim \exp(-M_{\alpha}\tau + \frac{1}{2}\Gamma_{\alpha}^{2}\tau^{2} + O(\tau^{3}))$$

$$\rho_{\alpha}(\omega,T) = A_{\alpha}(T)\exp\left(-\frac{[\omega - M_{\alpha}(T)]^{2}}{2\Gamma_{\alpha}^{2}(T)}\right) + A_{\alpha}^{cut}(T)\delta\left(\omega - \omega_{\alpha}^{cut}(T)\right)$$
(9)

Mass

• The mass is found to be consistent with zero temperature results [R. Larsen et al., arXiv:1910.07374], $\Delta M_{\alpha} = M_{\alpha}(T) - M_{\alpha}(0)$

Rasmus Larsen (University of Stavanger)