

Future facilities: the CBM experiment

Christian Pauly, Wuppertal university

for the CBM collaboration

BERGISCHE UNIVERSITÄT WUPPERTAL

CBM : Exploring the QCD phase diagram in regions of high net baryon density

Vanishing $\mu_{\rm B}$, high T (lattice QCD):

- \rightarrow Smooth cross over from hadronic to partonic medium
- \rightarrow T_c=132⁺³₋₆MeV at chiral limit, no critical point indicated by lattice QCD at μ_{B} / T_c < 3

Large μ_{B} , moderate T ???

- 1st order phase transition ?
- QCD Critical Point ?
- Chiral restoration at high $\mu_{\scriptscriptstyle B}$?
- EoS of dense nuclear matter ?
- Quarkyonic matter ?
- → Worldwide experimental efforts to answer these questions
- → CBM : dedicated experiment to explore this regime

Bazavov et al., PLB 795 (2019) 15-21 Ding et al., PRL 123 (2019) 6, 062002 Dini et al., Phys. Rev. D 105 (2022) 3, 034510

Slide 2

Christian Pauly Hard Probes 2023, Aschaffenburg

Christian Pauly

Astrophysical relevance of high $\mu_{\rm B}$:

Slide 3

Baryonic matter at high μ_{b} also of astrophysical relevance:

- Equation of state at neutron star density ?
- How is the inner core of a neutron star composed ? Strange matter ? Hyperons ? Quark matter
- Upper mass limit for neutron stars ?

Remarkable similarity between Binary neutron star merger and Heavy ion collision:

Neutron star merger :	$\begin{array}{l} T \sim 10 - 100 \; \text{MeV} \\ \rho \; < 2 - 5 \; \rho_0 \end{array}$
Heavy-ion collision:	T < 80 MeV ρ < 3 ρ ₀

18 orders of magnitude difference in scale,
20 orders in time duration
→ still similar conditions !

Hard Probes 2023, Aschaffenburg

CBM Physics Program

Phase diagram and phase transition

- Excitation function of intermediate mass di-leptons
- Excitation function of hyperons

Chiral Symmetry restoration at large $\mu_{\rm B}$

• Di-leptons at low invariant masses

Critical point

Event-by-event fluctuations of conserved quantities

QCD equation-of-state

- Collective flow of identified particles
- Particle production at threshold energies

Strange matter

- Hyper-nuclei
- Meta stable objects (e.g. strange dibaryons)

Heavy flavour in cold and dense matter

• Excitation function of open and hidden charm production

"Challenges in QCD matter physics" CBM Collaboration, Eur. Phys. J. A53 (2017) 60

Hadrons and Nucle

And a series an

Friman et al., Lect. Notes Phys. 814 (2011) 1

The CBM Experiment

- Fixed target experiment tracking acceptance : $1.5^{\circ} < \Theta_{lab} < 25^{\circ}$
- 2 interchangeable detector setups:
 Electron setup : RICH detector for e / π separation
 Muon setup : MUCH, instrumented iron absorber
- Peak interaction rate : 10 MHz (Au+Au) (300 kHz with MVD)
- Free-streaming, self-triggered DAQ system
- Online event reconstruction and selection
- Fast and radiation hard detectors
- 4d tracking (space + time)
- Data rate : up to 1 TB/sec online data $\sim 10^5$ ev/s to disk

Christian Pauly Hard Probes 2023, Aschaffenburg

30.03.2023

FAIR facility and CBM cave

Christian Pauly Hard Probes 2023, Aschalfenburg

30.03.2023

CBM compared to other high $\mu_{\rm B}$ facilities

- CBM will play a crucial role in exploration of the QCD phase diagram in region of high $\mu_{\rm B}$
 - $\rightarrow\,$ dedicated to highest interaction rates (up to 10 MHz)
 - \rightarrow rare probes, high accuracy
 - → multi-purpose detector, electron + muon + hadron setup
- HADES @ SIS100:

overlap with CBM at lowest energy \rightarrow systematics limited to 20 kHz and $\sqrt{S_{_{NN}}}=2.4$ GeV excellent di-electron capabilities

• STAR FXT@RHIC:

Christian Pauly

BES program completed; limited capabilities for rare probes

Hard Probes 2023, Aschaftenburg

- J-PARC-HI proposal: addition of heavy ion option (HI booster)
- CEE+@HIAF proposal: multipurpose detector based on TPC, anticipated rate capability 500 kHz hadronic probes only

T. Galatyuk, NPA982 (2019), update (2022) CBM, EPJA 53 3 (2017) 60

Dileptons – one of CBM's key observables

Electromagnetic radiation as multi-messenger of fireball

- No strong final state interaction
 - \rightarrow leave interaction volume undisturbed
 - $\rightarrow\,$ reflect the whole history of HI collision
- Encodes information of matter properties
 - degrees of freedom of the medium
 - fireball lifetime, temperature, acceleration, polarization
 - restoration of chiral symmetry
- LMR \rightarrow "Chronometer" : total yield ~ fireball lifetime
- **IMR** \rightarrow "Thermometer" : slope ~ emitting source temperature

Christian Pauly

Hard Probes 2023, Aschaffenburg

CBM di-lepton performance

- Performance studies with realistic detector geometries, material budget, detector response
- input : thermal radiation, in-medium hadronic rates (ρ , ω), and QGP rates \rightarrow Rapp, Wambach Adv. Nucl. Phys. 25, 1 (2000)
- Inv. mass resolution : $\sigma(M_{\omega_{\rightarrow} | + |}) \sim 14 \text{ MeV/c}^2$
- <S / CB > allows for precise measurements

Di-electron performance $R_{in} = O (100 \text{ kHz}, \text{ limited by MVD, DAQ rate}).$ $e^+ / e^- \text{ID} : \text{RICH} + \text{TRD} + \text{TOF}$ pion suppresson >= 10⁴

Galatyuk et al.: EPJA 52 (2016) 131

Di-muon performance R_{int} = **O (1 MHz)** µ ID: instrumented hadron absorber

Christian Pauly

Hard Probes 2023, Aschaffenburg

30.03.2023

CBM dielectron performance: first 3 years, 5 days/energy

isolated dielectron thermal radiation yield after first energy scan (corrected for Acceptance x Efficiency):

- 5 days per energy, 100 kHz IR
- Low mass (M_{e+e} < 1 GeV/c²), dominated by ρ , yield can be reconstructed with precision of 1.5 4.5 %
 - $\rightarrow\,$ allows for fireball lifetime measurement
- Intermediate mass $(M_{e+e} > 1 \text{ GeV/c}^2)$: accessible, statistics not yet sufficient to extract physics

from partonic to hadronic fireballs

Christian Pauly

Hard Probes 2023, Aschaffenburg

30.03.2023

first results after 3 years

-

Slide 11

Thermal excess radiation in Low mass range (IMR): (all resonance contibutions subtracted)

- Sensitive to fireball lifetime ("chronometer")
- Search for "extra radiation" due to latent heat:
 → hints to phase transition ? critical point ?
- 2-3 years: precision sufficient for 1st ord. phase trans. (expected enhancement: min. factor 2-3)

Caloric curve: Temperature vs collision energy

- Invariant mass slope in IMR as measure of T ("thermometer")
- Flattening of caloric curve
 - \rightarrow possible indication for phase transition
- 9% uncertainty in T_{fireball} for 2 energies in $\mu^{+}\mu^{-}$

Christian Pauly Hard Probes 2023, Aschaffenburg

Dileptons and chiral symmetry of QCD

- The ρ- and a, meson are chiral partners (vector / axial vector)
- Spectral function degenerates if chiral symmetry is restored
 - → Precise measurement of IMR spectral function as probe for chiral symmetry restoration

CBM/FAIR Phase 0 : HADES RICH upgrade

- Extensive CBM/FAIR Phase 0 program ongoing now...
- One example : New HADES RICH photon detector (2019) using ~50% of CBM RICH MAPMTs
- Same DIRICH based readout electronics •
- Common software developments CBM HADES ٠
- Fantastic performance after RICH upgrade: •
 - excellent timing precison : ~ 250 ps (sigma gauss)
 - 15 19 detected photoelectrons per ring (!), low noise

MAPMT readout module **CBM / HADES**

HADES RICH photon detector

Slide 13

Christian Pauly Hard Probes 2023, Aschaffenburg

Summary and outlook

- CBM + SIS100 @ FAIR is dedicated experiment to study high $\mu_{\rm B}$ region of QCD phase diagram
- Unprecedented interaction rates up to 10 MHz in HI collisions provide access to many, also rare probes
 - Di-leptons (Low mass / Intermediate mass range, <1 GeV /c² / >1 GeV/c²)
 - Hadron flow dynamics
 - Strangeness production
 - Fluctuations of conserved quantities
 - Hyperons and Hypernuclei
 - Charmonium / open charm
- **Multi purpose detector** in different configurations for eletron / muon and hadron focussed measurements
 - \rightarrow good control of systematics
 - $\rightarrow\,$ overlap in energy with existing HADES experiment
- Extensive FAIR Phase0 activities to assure quick success for day-1 operation
 - mini-CBM with prototypes of DAQ and all sub detectors
 - HADES RICH using CBM RICH technology already now
- CBM first beam (according to present FAIR time plan) : expected for 2028

Christian Pauly

Hard Probes 2023, Aschalfenburg

spares

Christian Pauly Hard Probes 2023, Aschaffenburg

CBM/FAIR Phase 0 – The path to success for day 1

CBM first beam expected 2028 Measurement program for first 3 years of operation:

- focus on beam energy scan program
- 60 days/year beam on target
- different detector configurations: e / μ / hadron setup
- slowly approaching full rate capability

Rich CBM/FAIR phase 0 program already now ongoing:

- mCBM at GSI SIS18 : CBM full system test setup
 - pre-series prototypes of all CBM sub-detectors
 - verification of trigger-less data transport
 - high-rate detector-tests with up to 10 MHz collision rates
- online Λ reconstruction, online tracking
 - physics program : Λ excitation function in SIS 18 energy range
- Useage of CBM detectors in other experiments
 - eTOF @ STAR installed, commissioned and running
 - Use of PSD modules at NA61 / Shine (and BM@N)
 - HADES RICH upgrade ...

Setup	Included subsystems	Average day-1 interaction rate
ELEHAD	MVD,STS,RICH,TRD,TOF,FPW	0.1 MHz
MUON	STS,MUCH,TRD,TOF,FPW	1 MHz
HADR	STS,TRD,TOF,FPW	0.5 MHz

Christian Pauly Hard Probes 2023, Aschaffenburg

30.03.2023