

Future Facilities: The EIC

The ePIC detector -From physcis motivation to a viable detector concept

Friederike Bock (ORNL) March 30, 2023

HP 2023, Aschaffenburg, Germany

HIGH X

EIC

WO

Back to the basics!

Where we are:

- Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Large fraction of momentum in proton (x) carried by 3 valence quarks (2u,d), but very small fraction of proton spin
- Nucleons contain additional dynamically generated quark-antiquark pairs & gluons each carrying low fraction of momentum
- Quark & gluon longitudinal momentum fractions well mapped out
- Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD

Proton

early 1900s

Proton

1975

Proton

2015

Proton in a nucleus

How did we learn this?

Deep Inelastic Scattering (DIS)

- $\mathsf{Q}^2 = \mathsf{s} \cdot \mathsf{x} \cdot \mathsf{y}$
- s center-of-mass energy squared
- Q^2 resolution power
 - x the fraction of the nucleon's momentum carried by the struck quarks (0 < x < 1)

y inelasticity

- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Event-by-event, model independent leading order determination of parton kinematics including sensitivity to particle's spin is possible
- $\, \circ \,$ Data at higher Q^2 obtained indirectly from hadron-collider measurements

What we don't know yet

- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

EIC vs HERA

Machine parameters

- Center-of-mass energy: 20 140 (318) GeV
 - electrons: 2.5 18 (27.5) GeV
 - ▶ protons: 40- 275 (920) GeV (ions: $Z/A \times E_p$)
- Luminosity: 10^{34} (10^{31}) cm⁻² s⁻¹
- \bullet Polarization: up to 70% (e & ion) (only e^{\pm} up to 60%)
- Ion species: $p \rightarrow U$ (A > 1 only in fixed target)
- Detectors:
 - ► full coverage: 2 (2)
 - fixed target: 0 (2 limited far-forward coverage)

EIC will have:

- Iower energy
- variable C-o-M energy w/o significant loss in luminosity
- higher luminosity

- + Hadron polarization
- + Nuclear beams
- + Modern detector(s)

Generalized detector design considerations

- Large rapidity coverage for central detector
- Specialized far-forward detectors for *p* kinematics measurements
- High precision low mass tracking
- Hermetic coverage of tracking, electromagnetic & hadronic calorimetry
- High performance single track PID for π , K, p separation

• High control of systematics luminosity monitors, electron & hadron polarimetry

Highly integrated design between detector and machine for IR

[EIC YR]

ZDC

Roman Pots

Оак

National Laborators

The detector design process

Define physics objectives & generic design parameters

- Detector & machine design driven by physics objectives
- Jan. 2020: BNL site selection
- Extensive generic detector R&D for EIC for PID, tracking & calorimetry
- YR outlines general detector requirements for benchmark physics observables
- Mar. 2021: Call for Detector Proposals
- Mar. 2022: ECCE chosen as reference design for detector 1
- Jul. 2022: ePIC collaboration
- now: TDR preparations

The detector design process

Define physics objectives & generic design parameters

Feb. 2021

Realistic machine & detector concepts

- ۲ Detector & machine design driven by physics objectives
- Jan. 2020: BNL site selection
- Extensive generic detector R&D for EIC for PID. tracking & 0 calorimetry
- YR outlines general detector requirements for benchmark physics observables
- Mar. 2021: Call for Detector Proposals
- Mar. 2022: ECCE chosen as reference design for detector 1
- Jul. 2022: ePIC collaboration
- now: TDR preparations

F. Bock (ORNL)

Tracker layout

Technology mix

- ITS3 MAPS based Si-detectors:
 - $\sigma = 10 \mu$ m, $X/X_0 \sim 0.05 0.55\%$ /layer
- Gaseous tracker:
 - $\sigma=$ 55 μ m, $X/X_0\sim 0.2\%/layer$
- AC-LGADs:

$$\sigma=$$
 30 μ m, $X/X_0\sim 1.5-6\%/$ layer

• mid-rapidity:

Ultra thin MAPS based Si-detectors, gaseous detectors & AC-LGADs

Forward and Backward:

MAPS based Silicon discs & AC-LGADs

- Outer layers placed to provide seeds for tracking & ideal track points before/after PID detectors
- New Magnet with BABAR dimensions $\mathsf{B}=1.7\text{-}2\mathsf{T}$

Tracking performance

- Stringent requirements from Yellow Report for electron resolution
- Backward momentum resolution requirement hard to meet, complemented by calorimetric resolution
- YR requirement assumes Calorimetry & Tracking need to fullfill requirements independently
- Rapidly evolving tracker design, including background and pattern recognition

Cherenkov-PID

- Optimized for charged pion, kaon & proton separation
- Particular focus on large η coverage
- Complemented by calorimetry & TOF
- Geometries optimized to fit ECCE baseline design while maintaining required performance
- ${\scriptstyle \bullet}\,$ Two alternatives for backward region, pfRICH & mRICH
- $\Rightarrow\,$ Global optimization process ongoing

[ATHENA prop] [ECCE prop]

Cherenkov-PID

Review 20.-21.3. decision anticipated soon

Time of flight (TOF)

- Analog Coupled Low Gain Avalanche Detectors (AC-LGADs) with 25 ps time resolution resolution
- Combined PID & tracking detector
- $\, \bullet \,$ Positions optimized for low momentum e/ π , $\pi/{\rm K},\,{\rm K}/{\rm p}$ separation
- Full η -coverage for simultaneous start time determination
- Alternative barrel design with less X/X_0

Electromagnetic Calorimetry (1)

Optimization criteria

144

10

Minimal acceptance gaps

0.6

ECCE simulation

single particles

- Scattered electron detection & identification (energy resolution & E/p)
- Shower separation within jets & good energy resolution (h-endcap)
- Most stringent constraints in e-endcap & barrel
- $\bullet\,$ h-endcap with high granularity & good energy resolution

[ECCE prop]

Electromagnetic Calorimetry (2)

FEMC

Endcap regions:

- Review 13.-14.3. decision anticipated soon
- **EEMC** homogenous high resolution PbWO₄ crystal ECal
- FEMC highly granular W-Scintilating Fiber calalorimeter

Barrel region - alternatives:

- Sci-Glass: homogenous, projective Sci-Glass ECal
- Imaging: 6 layers of 0.5x0.5mm Astro-Pix Silicon layers, interleaved with Pb-SciFi calorimeter

Hadronic Calorimetry

 Designed to complement tracking in Particle-Flow algorithm

OHCAL/IHCAL

- Fe/Scint sampling calorimeter
- partial sPHENIX re-use & magnet flux return

• LFHCAL

- Fe/Scint & W/Scint sampling calorimeter
- Highly segmented (7 long. segments)
- W-segment as colimator
- High granularity inserts under discussion for forward E&HCal to extend η coverage to η = 4
- Electron end-cap HCAL as neutral veto, shallow Fe/Scint calo

LFHCAL

	[-+ +]	[++]
$\sigma_{\rm E}/{\rm E}$	~75%/√E + 15%*	~ 43% √E + 5.5%
depth	~4-5 λ _ι	~7-8 λ _ι

*Based on prototype beam tests and earlier experiments

F. Bock (ORNL)

Far-forward Region

Detector	Acceptance
Zero-Degree Calorimeter (ZDC) Roman Pots (2 stations) Off-Momentum Detectors (2 stations) B0 detector	$\begin{array}{l} \theta < 5.5 \; {\rm mrad} \; (\eta > 6) \\ 0 < \theta < 5.0 \; {\rm mrad} \; (\eta > 6) \\ \theta < 5.0 \; {\rm mrad} \; (\eta > 6) \\ 5.5 < \theta < 20.0 \; {\rm mrad} \; (4.6 < \eta < 5.9) \end{array}$

B0 system for

charged-particle measurement in forward direction & neutral-particle tagging

off-momentum detectors

measure charged particles with different rigidity than the beam, e.g., those following decay and fission.

or roman pot detectors

charged particles measurement close to beam envelope

zero-degree calorimeter

measures neutral particles at small angles.

Far-backward Region

Luminosity Monitor

Low Q2-tagger

- clean photo-production signal for $10^{-3} < Q^2 < 10^{-1}$
 - Double-layer AC-LGAD tracker at 24 & 37m from IP
 - PbWO₄ ECal (20cm × 2cm² crystals)

- This area is designed to measure scattered electrons at small, far-backward angles
- Strong technology synergies with central detector systems [EIC YR] [ECCE prop]

How to access partons at EIC

Neutral current (SI)DIS

Charged current DIS

Neutral current (SI)DIS

- Detect scattered lepton (DIS) in coincidence with identified hadrons (SIDIS)
 - measure correlation between different hadrons as fct. of *p*_T, *z*, η
 - needs FF to correlate hadron type with parton

Charged current DIS - W-exchange

 direct access to the quark flavor no FF – complementary to SIDIS

Jets

- best observable to access parton kinematics
- tag partons through the sub-processes and jet substructure
 - di-jets: relative $p_{\rm T} \rightarrow$ correlated to $k_{\rm T}$
 - tag on PDF

Nucleon Spin

- quark contribution: integral of g_1 over x from 0 to 1
- ullet gluon contribution: $dg_1(x,Q^2)/dlnQ^2
 ightarrow \Delta g(x,Q^2)$
- Measured through DIS cross section asymmetry in oppositely polarized collisions
- Improved constraints on the spin of quarks/gluons
 ⇒ Constrain contribution of orbital angular momentum (OAM) of partons to proton spin
- Collisions with polarized deuterons/helium-3 \Rightarrow Access to neutron spin

Imaging Nuclei

DGLAP

• predicts Q^2 but not A-dependence and x-dependence

Saturation models

• predict *A*-dependence and *x*-dependence but not *Q*²

Need: large Q^2 lever-arm for fixed x, A-scan

- $\bullet~$ Measure different structure function in eA $\rightarrow~$ constrain nPDF
- Does the nucleus behave like a proton at low-x?
- Diffractive J/ ψ production for imaging nucleus
- Diffractive ϕ/ρ production as saturation probe

Diffractive vector meson production

Imaging Nuclei

DGLAP

• predicts Q^2 but not A-dependence and x-dependence

Saturation models

 predict A-dependence and x-dependence but not Q²

Need: large Q^2 lever-arm for fixed x, A-scan

- $\bullet~$ Measure different structure function in eA $\rightarrow~$ constrain nPDF
- Does the nucleus behave like a proton at low-x?
- Diffractive J/ ψ production for imaging nucleus
- Diffractive ϕ/ρ production as saturation probe

Diffractive vector meson production

0 10 20 30 40 50 60

2+1 dimensional Imaging of Quarks & Gluons

Nuclear Femtography

- Structure mapped in terms of:
 - $b_{\scriptscriptstyle T} =$ transverse position
 - $k_{\rm T} = {\rm transverse \ momentum}$
- use different processes to access different aspects of distribution functions

- **PDFs**: (SI)DIS cross sections
- **GPDs**: Deep Exclusive Scattering (DES) cross sections like: deeply virtual Compton scattering (DVCS) $\gamma^* + p \rightarrow \gamma + p$ or production of a vector meson $\gamma^* + p \rightarrow V + p$ Spin-dependent 2+1D coordinate space images
- **TMDs**: SIDIS cross sections Spin-dependent 3D momentum space images

Color Glass Condensate?

- \circ e interacts over distances $L \sim (2mNx)^{-1}$
- For $L > 2R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back
- Probe interacts coherently with all nucleons
- $\Rightarrow\,$ Enhancement of Q_s with $A\to$ non-linear QCD regime reached at significantly lower energy in A than in proton

Di-Hadron or Di-Jet Correlations

- \bullet Low p/A gluon n density (ep): pQCD 2 \rightarrow 2 process predicts \Rightarrow back-to-back di-jet
- High gluon density (eA): 2 \rightarrow many process \Rightarrow expect broadening of away-side

• EIC allows to study the evolution of Q_s with x

Kinematic Coverage

Collins & Sivers

Accelerator gives access to extensive kinematic range

 \Rightarrow Now we need a detector to match

F. Bock (ORNL)

Luminosity dependence - Main measurements

$\int Ldt$ **1 fb**⁻¹ inclusive DIS

- measure scattered electron
- $\rightarrow\,$ precision EM-Calorimetry
- multi-dimensional binning:
 x, Q²
- \rightarrow maximize x, Q^2 coverage & determines interaction region design

10 fb⁻¹ semi-inclusive DIS

- measure scattered electron in coincidence with identified hadrons
- multi-dimensional binning: x, Q^2, z, θ, p_T
- $\label{eq:product} \rightarrow \mbox{ maximize PID detector coverage} \\ \mbox{ in whole phase space}$

10-100 fb $^{-1}$ Exclusive processes

• measure all particles in event

design luminosity:

 $\int Ldt = 100 \text{ fb}^{-1} \text{ per vear}$

 $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- $\label{eq:hermetic tracking} \rightarrow \mbox{ hermetic tracking } + \mbox{ hadronic calorimetry}$
- multi-dimensional binning: x, Q^2, z, θ, p_T
- measure proton kinematics
- $\rightarrow\,$ strong constraints on far-forward detector & interaction region

Diffractive Vector Meson Production

 $\mathcal{L}((+))$