Future Facilities: RHIC

Megan Connors (GSU)

Hard Probes March 30, 2023

RHIC Run Plan 2023-2025

Year	Species	What's new
2023	Au+Au	sPHENIX: Commissioning, Calibration and 1 st physics STAR: 1 st results with new updates at 200 GeV Au+Au
2024	p+p	Precise reference for new HI measurements
	p+Au	Cold QCD/small system measurements
2025	Au+Au	High Statistics Au+Au

"The PAC urges BNL Management and the DOE to do everything possible to ensure sufficient beamtime to accomplish the physics goals in Runs 23, 24, 25 set out for sPHENIX in the 2015 NSAC Long Range Plan."

STAR Beam Use Report

sPHENIX Beam Use Proposal

PAC Meeting June 2022: https://indico.bnl.gov/event/15148/

PAC Recommendations: <u>https://www.bnl.gov/npp/docs/2022-npp-pac-recommendations-final.pdf</u>

M. Connors

HARD

RHIC Detectors in 2023

Upgraded STAR

DAQ rate: 5000 Hz

Forward jet detection

- Emcal: refurbished
 PHENIX PbSc
- Hcal: FeSc Sandwich

2.5 < η < 4.0

- 3 Si mini-strip sensors
- four stations of small-strip thin gap chambers

HF to study initial state

- $J/\psi v_1$ to study initial tilt
- iTPC:
 - Improved momentum resolution
 - Extended η coverage
 - More precisely quantify directed flow

List of anticipate HP results: <u>STAR Highlight Talk</u> <u>STAR Beam Use Report</u>

sPHENIX

Antonio's talk <u>Tuesday</u>

ZDC

Calorimeters: HCal

Outer and Inner HCal:

- First hadronic calorimeter at midrapidity at RHIC
- Important for precise jet energy measurements
- Scintillator tiles between tilted absorber plates
- $|\eta| < 1.1$, full azimuthal coverage
- Hadron $\Delta E/E \sim 14\% + 65\%/\sqrt{E}$

Calorimeters: EMCal

EMCal:

- Scintillator fiber tungsten sampling calorimeter
- Identification of photons and electrons
- Towers with ~0.025 x 0.025 in $\eta \ge \phi$
- EM ΔE/E ~5% + 16%/√E

Tracking: TPC

Time-projection chamber (TPC)

- Ungated continuous readout
- Reconstruction of heavy-flavor decays
- 150 μ m r ϕ resolution

PROBE

- Δp/p ~1% at 5 GeV/c charged particles
- TPC outer tracker (TPOT) used for calibrations

Tracking: INTT

INTT:

- silicon strip tracker
- Interpolation of tracks between MVTX and TPC
- 2 layers
- 78 μm pitch
- Low radiation length about $X/X_0 < 1.1\%$ per ladder

INTT installed March 2023!

Tracking: MVTX

X-wing support installed

MVTX:

MAPS based vertex tracker

• 3 layers

- ALPIDE chip near copy of the ITS2 from ALICE
- Fine pixel pitch (27 μm x 29 μm)
 - ~5 μm position resolution
- Low material budget (~0.3% X₀ per layer)

Tracking: MVTX

2:55pm MVTX west on insertion table

MVTX:

- MAPS based vertex tracker
- 3 layers
- ALPIDE chip near copy of the ITS2 from ALICE
- Fine pixel pitch (27 μ m x 29 μ m)
 - ~5 μm position resolution
- Low material budget (~0.3% X₀ per layer)

MVTX installation underway!

Tracking: MVTX

MVTX installation underway!!!!

3:57pm update: Both halves are on insertion table!!

RHIC Run 2023

Starting next month...

Kinematic Reach

sPHENIX will provide

significant extension in kinematics and overlap with LHC

SPHE

Kinematic Reach

where differences at LHC experiments exist

SPHE

 $Q_0 \sim \Lambda_{\rm OCD}$

- Event Plane Detector will improve resolutions to enable more precise jet v₂ studies
 - Pathlength dependence of energy loss
 - Jet v₂ in p+Au to deepen understanding of small systems

W

Photon-Tagged Jets at RHIC

- "Golden Channel" for studying energy loss in the QGP
- Photon tags initial hard scattering kinematics directly probes energy loss
- Dominated by quark jets
- Because of γ/π^0 RHIC is ideal for measuring direct photons
- $x_{J\gamma}$ may be more sensitive at RHIC

PRG 102, 054910

Photon-Jet Imbalance

- Y_{dir} $x_{J\gamma} = p_{Tjet} / p_{T\gamma}$ /N^v dN/dx **sPHENIX** Projection SPHENIX 3.5 **JEWEL** 2.2.0, *T* = 260 MeV Years 1-3, $p_{\perp}^{\gamma} > 30 \text{ GeV}$ ■ 62 pb⁻¹ samp. *p*+*p* 2.5 32 nb⁻¹ samp. Au+Au (0-10%) 1.5 0.5 0.6 0.8 Photon+Jet x_{\downarrow}
- Photon tagged jets are a key component to the sPHENIX program
- Statistical precision improves systematic uncertainties

Aschaffenburg

Upsilon R_{AA} vs N_{part}

- Separate 3 Upsilon states at RHIC
- R_{AA} from peripheral to central collisions

HARD PROBES

Upsilon R_{AA} vs p_T

- Separate 3 Upsilon states at sPHENIX
- Potential to quantify $\Upsilon(3S)$ suppression at RHIC energies

Y(2s)

Y(3s)

Upsilon R_{AA} vs p_T

- Separate 3 Upsilon states at sPHENIX
- Potential to quantify $\Upsilon(3S)$ suppression at RHIC energies
- Current STAR results use combined STAR/PHENIX p+p

Y(1s)

Y(2s)

Heavy Flavor in sPHENIX

- Streaming readout enables huge MB data for unbiased HF measurements in p+p collisions
- High precision non-prompt D suppression and flow at RHIC

b-tagged Jets at RHIC

- Sensitivity to collisional vs radiative energy loss
- Complimentary to LHC jets, accessing lower p_T region with larger heavy quark mass effect.

PROBE

M. Connors

b-tagged Jet Projection

- First b-jet measurement at RHIC
- Power to constrain medium coupling parameters in models

Summary

- STAR measurements with increased rapidity and statistics
- The sPHENIX era is upon us
 - First ever b-jet measurements at RHIC
 - Measurement of upsilon 3S suppression
 - Precise imbalance & substructure measurements
 with jets and γ–tagged jets
- Achieve the goals established in the 2015 US LRP to complete the scientific mission of RHIC
- Looking forward to interesting results at the next HP!

1.5

20 HARD PROBES 20

Jets Statistics with Cold QCD

Utilizing p+Au and p+p data from year 2

Extends previous RHIC photon/hadron measurements beyond 20 GeV/c

b-jet Projections

- sPHENIX b-tagged di-jets compared to calculations from SCET_{MG} framework
 - Precision capable of constraining medium coupling

Photon-jet in sPHENIX

- Photon-jets are a powerful tool for studying jet quenching and medium response effects with sPHENIX
- γ-jet fragmentation functions require:
 - Photon reconstruction in EMCal
 - Jet reconstruction (EMCal+HCals)
 - Tracking (MAPS+INTT+TPC)

Fragmentation Function

sPHENIX Detectors

Run Plan 2023-2025

2023	2024	2025
Au+Au	p+p/p+Au	Au+Au

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	$ \begin{array}{c} \sqrt{s_{\rm NN}} \\ ({\rm GeV}) \end{array} $	Species	Number Events/ Sampled Luminosity	Year
		[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm	200 200 200	$\begin{vmatrix} \mathrm{Au} + \mathrm{Au} \\ p + p \\ p + \mathrm{Au} \end{vmatrix}$	$\begin{array}{c} 20\mathrm{B} \ / \ 40 \ \mathrm{nb^{-1}} \\ 235 \ \mathrm{pb^{-1}} \\ 1.3 \ \mathrm{pb^{-1}} \end{array}$	$\begin{array}{r} 2023 + 2025 \\ 2024 \\ 2024 \end{array}$
2023	Au+Au	200	24 (28)	9 (13)	$3.7~(5.7)~{ m nb}^{-1}$	$4.5 (6.9) \text{ nb}^{-1}$				
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹				
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]					
2024	p^{\uparrow} +Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ { m pb}^{-1}$				
					0.01 pb ⁻¹ [10%- <i>str</i>]					
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹				

Opportunities beyond 3-year plan

- sPHENIX goals accomplished with 3 year plan
- Additional physics opportunities achievable beyond 3 year plan

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	$80 \ { m pb}^{-1}$
					80 pb ⁻¹ [100%- <i>str</i>]	
-	O+O	200	_	2	$18 \mathrm{nb}^{-1}$	$37 \mathrm{nb}^{-1}$
					37 nb ⁻¹ [100%- <i>str</i>]	
-	Ar+Ar	200	_	2	$6 \mathrm{nb}^{-1}$	$12 \mathrm{nb}^{-1}$
					12 nb ⁻¹ [100%- <i>str</i>]	
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%- <i>str</i> /DeMux]	30 nb^{-1}

