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Heavy-particle diffusion: physics motivation

Goal: getting access to the microscopic properties of the background
medium in which the Brownian particle propagates
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@ Perrin (1909): proving the granular
structure of matter and providing an
estimate of the Avogadro number
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erimental data,) See Problem 4.5. [Data from Perrin, 1948.]
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Perrin (1909): proving the granular
structure of matter and providing an
estimate of the Avogadro number

RT

=  ~55-72.10%
6mran D.

Na

100 years later: getting an estimate of
similar accuracy of some transport
coefficients, like e.g. the momentum
broadening
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Where do we stand?

- e IQCD, L. Altenkort et al, PRD 103 (2021) 014511

- IQCD, H.T. Ding et al, PRD 86 (2012) 014509

- I oCD, D. Banerjee etal, PRD 85 (2012) 014510

- I s 7/R. PRL 118 (2017) 212301

- I AicE LB 813 (2021) 136054

- I Auce, JHEP 01 (2022) 174 m
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21D, T, at T, = 155 MeV

Still far from accuracy and precision of Perrin result for Na...
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A crucial difference

In HF studies in nuclear collisions the nature of the Brownian particle
changes during its propagation through the medium

@ possible thermal mass-shift (here neglected)

@ hadronization (impossible to neglect)
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A crucial difference

In HF studies in nuclear collisions the nature of the Brownian particle
changes during its propagation through the medium

@ possible thermal mass-shift (here neglected)
@ hadronization (impossible to neglect)

e source of systematic uncertainty in extracting transport
coefficients;

e an issue of interest in itself: how quark — hadron transition
changes in the presence of a medium (the topic of this talk)

4/29



HF hadronization: experimental findings
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Strong enhancement of charmed baryon/meson ratio, incompatible with
hadronization models tuned to reproduce ete™ data
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Strong enhancement of charmed baryon/meson ratio, incompatible with
hadronization models tuned to reproduce ete™ data

@ pattern similar to light hadrons

5/29



HF hadronization: experimental findings
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Strong enhancement of charmed baryon/meson ratio, incompatible with
hadronization models tuned to reproduce ete™ data

@ pattern similar to light hadrons

@ baryon enhancement observed also in pp collisions: is a dense
medium formed also there? Breaking of factorization description in
pp collisions

dop# Z fa(x1) fo(x2) @ dFap—scex @Dcp (2)

a,b,X
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Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA),
clusters (HERWIG), hadrons/resonances (coalescence).
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@ in “elementary collisions”: from the hard process, shower stage,
underlying event and beam remnants;
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Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA),
clusters (HERWIG), hadrons/resonances (coalescence). Partons taken

@ in “elementary collisions”: from the hard process, shower stage,
underlying event and beam remnants;

@ in heavy-ion collisions: from the hot medium produced in the
collision. NB Involved partons closer in space in this case and this

has deep consequence!
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A warning from nucleosynthesis
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@ Final yields in stellar nucleosyntesis extremely sensitive to existence
of excited states just above threshold (not a simple N — 1 process);
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A warning from nucleosynthesis
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@ Final yields in stellar nucleosyntesis extremely sensitive to existence
of excited states just above threshold (not a simple N — 1 process);

@ States well know experimentally and predicted by theory calculations
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@ Final yields in stellar nucleosyntesis extremely sensitive to existence
of excited states just above threshold (not a simple N — 1 process);

@ States well know experimentally and predicted by theory calculations

@ Stellar temperature ~ 108 K ~ 10 keV not enough to affect
nucleon/nuclear properties (vacuum spectrum)
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A warning from nucleosynthesis
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@ Final yields in stellar nucleosyntesis extremely sensitive to existence
of excited states just above threshold (not a simple N — 1 process);

@ States well know experimentally and predicted by theory calculations
@ Stellar temperature ~ 108 K ~ 10 keV not enough to affect

nucleon/nuclear properties (vacuum spectrum)

None of the above conditions is fully under control in the quark to
hadron transition: PDG states < RQM states (D. Ebert et al., PRD 84,

014025 (2011)), what is a hadron around T.?
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A warning from nucleosynthesis
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@ Final yields in stellar nucleosyntesis extremely sensitive to existence
of excited states just above threshold (not a simple N — 1 process);
@ States well know experimentally and predicted by theory calculations
@ Stellar temperature ~ 108 K ~ 10 keV not enough to affect
nucleon/nuclear properties (vacuum spectrum)
None of the above conditions is fully under control in the quark to
hadron transition: PDG states < RQM states (D. Ebert et al., PRD 84,

014025 (2011)), what is a hadron around T.?
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Disclaimer
In the following | will start from a specific minimal
model of hadronization, based on a local color
neutralization mechanism, just to illustrate common
features and challenges to all approaches!

1For a quantitative comparison see talk by Jiaxing Zhao
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A minimal model of in-medium hadronization

Once a ¢ quarks reaches a fluid cell at Ty = 155 MeV recombined it with a
light antiquark or diquark, assumed to be thermally distributed (for more
details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

T M? M
n=g 8 272 ke Th
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o Light clusters (Mc < Mp,.x) undergo isotropic two-body decay
in their own rest frame, as in HERWIG;
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Once a ¢ quarks reaches a fluid cell at Ty = 155 MeV recombined it with a
light antiquark or diquark, assumed to be thermally distributed (for more
details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

T M? M
n=g 8 272 ke Th

Extract its thermal three-momentum in the LRF of the fluid;

Boost the thermal particle to the LAB frame and recombine it with the
HQ), constructing the cluster C;

Evaluate cluster mass Mc. If Mc is smaller than lightest charmed hadron
in that channel (~10% cases) go back to point 1, otherwise go to point 5;

Introduce intermediate cutoff Mmax = 4 GeV (as in HERWIG) and
simulate cluster decay, depending on its invariant mass:

© © o060

o Light clusters (Mc < Mp,.x) undergo isotropic two-body decay
in their own rest frame, as in HERWIG;

o Heavier clusters (M¢ > Max) undergo string fragmentation
into N hadrons, as in PYTHIA.
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Cluster mass distribution
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@ Cluster mass distribution is steeply falling, most clusters are light
and undergo a two-body decay C — h. + 7/~;

@ This arises from Space-Momentum Correlation: charm momentum
usually parallel to fluid velocity — recombination occurs locally
between quite collinear partons;
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Cluster mass distribution

Species | g | & | M (GeV) he 'F Pb-Pb coll. @ 5.02 TeV T W/ SMO) E
I 2 | 2] 033000 | D%, D" g centr. 0-10% — o
S 2 1 0.50000 D5+ T; (\.1:— y HTL transp. coeff. : SIELI((Y;/O(VSVVISCN)[C) |
(ud)o 1| 1| 057933 NE ¢ S ~_ cHud, (W0 SMO)|
(I, | 3|3 | 077133 A RN N
(she | 1 [ 2] 080473 | =0=F | 2™ N\ T ]
(sh: | 3 [ 2] 092053 | == | = [ I\ e
(ss)1 | 3 | 1 | 1.00361 | Q2 =7 Sl T \ U R
(masses taken from PYTHIA 6.4) o s I\‘/l(g]e\/‘) R

@ Cluster mass distribution is steeply falling, most clusters are light
and undergo a two-body decay C — h. + 7/7;

@ This arises from Space-Momentum Correlation: charm momentum
usually parallel to fluid velocity — recombination occurs locally
between quite collinear partons;

@ Cross-check: remove SMC by randomly selecting light parton from
a different point on the FO hypersurface — long high-Mc tail
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On the suppression of high-mass clusters
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Both in this model and in QCD event generators like e.g. HERWIG (B.R.
Webber, NPB 238 (1984) 492) one gets a steeply falling M distribution
due to preferential cluster formation between collinear partons
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Both in this model and in QCD event generators like e.g. HERWIG (B.R.
Webber, NPB 238 (1984) 492) one gets a steeply falling M distribution
due to preferential cluster formation between collinear partons

@ In this model this is due to the SMC arising from recombining
nearby partons belonging to an expanding fireball;
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On the suppression of high-mass clusters
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Both in this model and in QCD event generators like e.g. HERWIG (B.R.
Webber, NPB 238 (1984) 492) one gets a steeply falling M distribution
due to preferential cluster formation between collinear partons

@ In this model this is due to the SMC arising from recombining
nearby partons belonging to an expanding fireball;

@ In Herwig, in ete™ collisions, this is due to the angular ordered
parton shower (pre-confinement)
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Results in AA: charmed-hadron pr-distributions
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Charmed hadron pr-spectra normalized to integrated D°-yield per event.
At high pt better agreement with experimental data for curves including
momentum dependence of the transport coefficients (HTL curves)
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Results in AA: hadron ratios
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@ Qualitative agreement with STAR results;
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Results in AA: hadron ratios
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@ Qualitative agreement with STAR results;

@ Overprediction of the D /D° ratio measured by ALICE (tension
with STAR data);
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@ Qualitative agreement with STAR results;
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@ Overprediction of the D /D° ratio measured by ALICE (tension

with STAR data);

@ Milder centrality dependence of the AJ /D ratio than ALICE

findings

Results in AA: hadron ratios
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Results in AA: hadron ratios
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@ Qualitative agreement with STAR results;

@ Overprediction of the D /D° ratio measured by ALICE (tension
with STAR data);

@ Milder centrality dependence of the AJ /D ratio than ALICE
findings

@ Mild dependence on the transport coefficients, i.e. on the dynamics
in the deconfined phase
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How much flow acquired at hadronization?
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How much flow acquired at hadronization?
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Big enhancement of charmed hadron production at intermediate pt

@ SMC efficient mechanism to transfer flow from the fireball to the
charmed hadrons;

@ stronger effect for charmed baryons due to the larger radial flow of
diquarks (mass ordering)
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How much flow acquired at hadronization?
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Big enhancement of charmed hadron production at intermediate pt
@ SMC efficient mechanism to transfer flow from the fireball to the
charmed hadrons;
@ stronger effect for charmed baryons due to the larger radial flow of
diquarks (mass ordering)

@ Reshuffling of the spectra from small to intermediate pr common
feature to most recombination models implementing SMC (R. Rapp
et al., Nucl.Phys.A 979 (2018) 21) 1520



Why are SMC so effective?

——7—7———

— Pb-Pb, 0-5% centr. class

IN(N/d,)

 ta
If color-neutralization occurs locally, HQ momentum strongly correlated
with the collective — sizable — velocity of the fireball
@ This is the case for the present cluster-formation model

@ but also for coalescence models, thanks to the quite localized form
of the hadron Wigner function:

. r
wp o (5 7)
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The role of SMC
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Explore the role of SMC's combining the HQ with a thermal particle chosen
from a different point on the FO hypersurface — recombining partons no
longer collinear, hence:
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Explore the role of SMC's combining the HQ with a thermal particle chosen
from a different point on the FO hypersurface — recombining partons no
longer collinear, hence:

@ No big enhancement of the charmed hadron v,

@ Larger invariant mass of the formed cluster — fragmentation as a
standard Lund string, with no modified HF hadrochemistry
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The role of SMC
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Explore the role of SMC's combining the HQ with a thermal particle chosen
from a different point on the FO hypersurface — recombining partons no
longer collinear, hence:
@ No big enhancement of the charmed hadron v,
@ Larger invariant mass of the formed cluster — fragmentation as a
standard Lund string, with no modified HF hadrochemistry
@ Same finding in RRM model

17/29



Some comments

Crucial point: formation of quite light color-singlet clusters undergoing in most
cases a decay into a charmed hadron plus a very soft particle.
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cases a decay into a charmed hadron plus a very soft particle. Ingredient
already necessary in the past to describe peculiar effects in charm
hadroproduction at Fermilab and SPS (e.g. 7~ + p collisions)
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Second endpoint boosts the string along the direction of the beam-remnant
(beam-drag effect), leading to an asymmetry in the rapidity distribution of
D" /D~ mesons
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cases a decay into a charmed hadron plus a very soft particle. Ingredient
already necessary in the past to describe peculiar effects in charm
hadroproduction at Fermilab and SPS (e.g. @~ + p collisions)

0.35— (a) D production

4| '
(i) cluster collapse (pion/ramnakit)

(1/N)dN/dM
o

2-hadron decay

3-hage6f decay
ore

2. .
5 M 3 35
singlet

Second endpoint boosts the string along the direction of the beam-remnant
(beam-drag effect), leading to an asymmetry in the rapidity distribution of
D" /D~ mesons

. Op— — Op+
- Op- + op+
NB Major contribution to asymmetry from cluster collapse into a single hadron

(E. Norrbin and T. Sjostrand, PLB 442 (1998) 407 and-EPJ& 17. (2000} 137}
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Some comments

Crucial point: formation of quite light color-singlet clusters undergoing in most
cases a decay into a charmed hadron plus a very soft particle. Ingredient
already necessary in the past to describe peculiar effects in charm
hadroproduction at Fermilab and SPS (e.g. @~ + p collisions)

(@)D" production duality arguments, but also with the presence of soft
/ final-state interactions, i.e. the exchange of nonper-
turbative gluons that can carry some amount of
momentum between the low-mass string and the

(v) string fragmentationy | : §
ISR T surrounding_hadronic_systen. (NUREMOIOWIREINE
(on the exact natue of those:“glions . Spcifically.

we will not address the possibility of changes in the
T colour structure of events by such ‘gluons’.

04 (ii) cluster collapse (pion|
(v cluster decay

Second endpoint boosts the string along the direction of the beam-remnant
(beam-drag effect), leading to an asymmetry in the rapidity distribution of

D" /D~ mesons
Op— — Op+

Op- + op+
NB Major contribution to asymmetry from cluster collapse into a single hadron
(E. Norrbin and T. Sjostrand, PLB 442 (1998) 407 and EPJC 17 (2000) 137)!

How to conserve four-momentum? Same problem as in-coalescence...
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On color-reconnections and pp collisions
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Charmed baryon enhancement in pp collisions can be accounted for either
assuming the formation of a small fireball or, in PYTHIA, introducing the
possibility of color-reconnection (CR).
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assuming the formation of a small fireball or, in PYTHIA, introducing the
possibility of color-reconnection (CR). Strings have a finite thickness, in a
dense environment they can overlap

19/29



On color-reconnections and pp collisions

Tl
string §

scatt.
Hadron 2

o

T

i i

o To
| string 3

L
String 4

Charmed baryon enhancement in pp collisions can be accounted for either
assuming the formation of a small fireball or, in PYTHIA, introducing the
possibility of color-reconnection (CR). Strings have a finite thickness, in a
dense environment they can overlap and give rise to a rearrangement of
color connections to minimize their length (i.e. their invariant mass).
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On color-reconnections and pp collisions
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Charmed baryon enhancement in pp collisions can be accounted for either
assuming the formation of a small fireball or, in PYTHIA, introducing the
possibility of color-reconnection (CR). Strings have a finite thickness, in a
dense environment they can overlap and give rise to a rearrangement of
color connections to minimize their length (i.e. their invariant mass).
Implementing hadronization as a recombination process involving nearby
partons can be viewed as an extreme case of CR.
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On color-reconnections and pp collisions
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Charmed baryon enhancement in pp collisions can be accounted for either
assuming the formation of a small fireball or, in PYTHIA, introducing the
possibility of color-reconnection (CR). Strings have a finite thickness, in a
dense environment they can overlap and give rise to a rearrangement of
color connections to minimize their length (i.e. their invariant mass).
Implementing hadronization as a recombination process involving nearby
partons can be viewed as an extreme case of CR. The effect on the
cluster mass distribution is the same.

19/29



Caveat: reconnection of Abelian gauge fields

Earth to
&

&

Most violent phenomena on the solar surface associated to magnetic
reconnections: sudden conversion of energy stored in the B-field into
kinetic energy of the plasma particles
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Most violent phenomena on the solar surface associated to magnetic
reconnections: sudden conversion of energy stored in the B-field into
kinetic energy of the plasma particles

@ Not completely understood in the case of electrodynamic plasmas
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Caveat: reconnection of Abelian gauge fields

Earth to
&

&

Most violent phenomena on the solar surface associated to magnetic
reconnections: sudden conversion of energy stored in the B-field into
kinetic energy of the plasma particles

@ Not completely understood in the case of electrodynamic plasmas

@ Where does the energy stored in the color fields goes? When are
reconnected strings formed?
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Addressing pp collisions...
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro
codes (MUSIC and ECHO-QGP);

21/29



Addressing pp collisions...
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro
codes (MUSIC and ECHO-QGP);

@ Perfect correlation between initial entropy (dS/dy) and final particle
multiplicity (dNen/dn), S &~ 7.2Ney
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Addressing pp collisions...

o(xy) (im™3), min-bias event so(xy) (fm3), high-mult event
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro
codes (MUSIC and ECHO-QGP);

@ Perfect correlation between initial entropy (dS/dy) and final particle
multiplicity (dNen/dn), S &~ 7.2Ne,

@ Samples of 10° minimum-bias ((dS/dy)., =~ 37.6) and high-multiplicity
((dS/dy)o_10 ~= 187.5) events used to simulate HQ transport and

hadronization
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Why in-medium hadronization also in pp?
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QQ production biased towards hot spots of highest multiplicity events
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Why in-medium hadronization also in pp?
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QQ production biased towards hot spots of highest multiplicity events
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Why in-medium hadronization also in pp?

e
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QQ production biased towards hot spots of highest multiplicity events
— only about 5% of Q@ pairs initially found in fluid cells below T,
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Results in pp: particle ratios
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Premilinary results?:
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@ Enhancement of charmed baryon/meson ratio qualitatively

reproduced

@ Multiplicity dependence of the radial-flow peak position observed
(just a reshuffling of the momentum, without affecting the yields)

2In collaboration with D. Pablos, A. De Pace, F. Prino et=al.
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Results in pp: elliptic flow
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@ Non-vanishing v2 even in minimum-bias pp
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Results in pp: elliptic flow
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@ Non-vanishing v2 even in minimum-bias pp

@ D-meson v, in high-multiplicity pp in agreement with CMS results
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Results in pp: elliptic flow
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@ Non-vanishing v2 even in minimum-bias pp
@ D-meson v, in high-multiplicity pp in agreement with CMS results

@ Sizable fraction of v» acquired at hadronization
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Relevance for the Raa in nuclear collisions
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@ Slope of the spectra in
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pp better described including medium effects
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@ Slope of the spectra in pp better described including medium effects

@ Inclusion of medium effects in minimum-bias pp benchmark
fundamental to better describe charmed hadron Ras (left panel vs
magenta curve in the right panel), both the radial-flow peak and the
species dependence
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In summary

@ Hadronization will remain a major source of systematic
theoretical uncertainty
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In summary

@ Hadronization will remain a major source of systematic
theoretical uncertainty

@ It is important to quantify such an uncertainty and to know
that it alsways points towards the same direction (enhanced
baryon production, radial and elliptic flow)

@ Are we giving different names to approaches doing a very
similar job?

@ What is common to all microscopic hadronization models?

@ Strong implications for the extraction of transport coefficients
(same flow reproduced with milder in-medium interaction);

o Consistent modelling of in-medium hadronization also in pA
and pp collisions mandatory.
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Results in AA: fragmentation fractions
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@ FF's in AA collisions pretty independent from the centrality, leading
simply to a reshuffling of the pr-distribution (stronger radial flow of
charmed baryons in central events);

@ Strong enhancement of charmed baryon production wrt theoretical
predictions by default tunings of QCD generators in pp collisions
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Results in AA: fragmentation fractions
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@ FF's in AA collisions pretty independent from the centrality, leading
simply to a reshuffling of the pr-distribution (stronger radial flow of
charmed baryons in central events);

@ Strong enhancement of charmed baryon production wrt theoretical
predictions by default tunings of QCD generators in pp collisions

NB Model predictions for pp collisions displayed in the following
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Results in AA: elliptic flow
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Two different bands for charmed mesons and baryons arising in our
model from the higher mass of diquarks involved in the recombination
process (mass scaling rather than quark-number scaling)
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