

HP 2023 - The 11th International Conference on Hard and Electromagnetic Probes of **High-Energy Nuclear Collisions** 26-31 March 2023, Aschaffenburg, Germany

Yeonju Go

University of Colorado Boulder

• As jets are modified by medium, the medium is also affected by jets!

• Structures formed; Mach cone, sonic boom, shock wave, diffusion wake, ...

Yeonju Go

Hard Probes 2023 March 26-31

Enhancement pletion

Why is medium response important to understand?

- Essential to describe the jet (sub)structure precisely

Medium Response in Various Models: (1) Recoil

- Different models have different medium response implementation
- Recoil (Weakly-coupled approach, when $E > E_{med}$)
 - partons in medium scatter with hard parton
 - "hole" (or "negative") of recoiled medium partons can be propagated and subtracted from the final parton spectra

• Models with recoil

- LBT (T. Luo, S. Cao, Y. He, X.-N. Wang, S.-L. Zhang, G.-Y. Qin, Y. Zhu, ...)
 - low virtuality
- → MARTINI (C. Park, S. Jeon, C. Gale, B. Schenke, ...)
 - low virtuality
- → MATTER (A. Majumder, S. Cao, G. Vujanovic, M. Kordell, ...)
 - high virtuality
- JEWEL (K. C. Zapp, R. Kunnawalkam Elayavalli, J. G. Milhano, U. A. Wiedemann, ...) - re-scatterings of recoil partons with the medium are not implemented yet

Medium Response in Various Models: (2) Hydro

- Hydrodynamics (Strongly-coupled approach, when $E \lesssim E_{\rm med}$)
 - \rightarrow medium fluid with a source term from a jet; $\partial_{\mu}T^{\mu\nu}_{\text{fluid}} = J^{\nu}_{\text{jet}}$
- Models with hydrodynamics
 - ➡ Coupled Jet-Fluid (Y. Tachibana, N.-B. Chang, G.-Y. Qin, …)
 - Ideal hydro
 - ➡ EPOS3-HQ (I. Karpenko, M. Rohrmoser, J. Aichelin, P. Gossiaux, K. Werner, …)
 - viscous hydro (vHLLE)
 - source term thermalizes after $au_{
 m th}$

(**h**, when $E \lesssim E_{\text{med}}$) $\partial_{\mu} T^{\mu\nu}_{\text{fluid}} = J^{\nu}_{\text{jet}}$

Medium Response in Various Models: (3) Hybrid

- Hybrid (Recoil+Hydrodynamics)
 - → (Co)LBT-hydro (W. Chen, T. Luo, S. Cao, L.-G. Pang, X.-N, Wang, …)
 - LBT + viscous hydro (CLVisc)
 - → JETSCAPE (JETSCAPE)
 - e.g. MATTER + LBT/MARTINI + viscous hydro (MUSIC)

- Other models
- Hybrid Strong/Weak Coupling (+ Linearized Hydro)
- → AMPT (G.-L. Ma, X.-N. Wang, Z. Gao, A. Luo, H.-Z. Zhang, G.-Y. Qin, ...)
 - Boltzmann equation based approach
- → **BAMPS** (I. Bouras, Z. Xu, C. Greiner, B. Betz, …)
 - Boltzmann equation based approach
- → MARTINI + Causal diffusion (S. Ryu, S. McDonald, C. Shen S. Jeon, C. Gale)

➡ ...

Structure formed from Medium Response in Models

- Enhancement in jet direction; Mach-cone like structure
- Depletion in the opposite direction of jet; diffusion wake

Enhancemen **E** 3 rdE/drdz (Ge//fu 15 10 5 0 Depletion

(b) t=8 fm/c

LBT (Recoil)

Y. He et al. PRC 91, 054908 (2015)

What Jet Observables to investigate Medium Response?

- Jet fragmentation function
- Jet- or Boson-hadron correlation
- Jet shape
- R-dependent nuclear modification factor (R_{AA})

. . .

Fragmentation Function in γ**-triggered events at RHIC**

$$z = p_{\rm T}^h / p_{\rm T}^{\gamma}$$

$$\xi = \ln(p_{\rm T}^{\gamma}/p_{\rm T}^{h}) = \ln(1/z)$$

$$I_{AA} = \frac{Y_{Pb+Pb}^{hadron}/N_{Pb+Pb}^{\gamma}}{Y_{pp}^{hadron}/N_{pp}^{\gamma}}$$

w/ medium response

w/o medium response

PHENIX PRC 102, 054910 (2020) **STAR** PLB 760 (2016) 689

CoLBT-hydro

W. Chen et al, PLB 777 (2018) 86

• *Enhancement* of low- $p_{\rm T}$ hadrons, *depletion* of high- $p_{\rm T}$ hadrons

 Overall, ColBT-hydro with jet induced medium excitations (j.i.m.e) describe the data better than the one *without* the medium response

What Jet Observables to investigate Medium Response?

- Jet fragmentation function
- Jet- or Boson-hadron correlation
- Jet shape
- R-dependent nuclear modification factor (RAA)

. . .

10

What Jet Observables to investigate Medium Response?

- Jet fragmentation function
- Jet- or Boson-hadron correlation
- Jet shape
- R-dependent nuclear modification factor (R_{AA})
- . . .

Jet axis OGP

Jet Shape

• At *large* angle, *enhancement* by medium response

• At *small* angle, negligible effect from medium response

What Jet Observables to investigate Medium Response?

- Jet fragmentation function
- Jet- or Boson-hadron correlation
- Jet shape
- R-dependent nuclear modification factor (RAA)
- . . .

Yeonju Go

Hard Probes 2023 March 26-31

Significantly different picture between w/o and w/ medium response in model

- At high jet p_T (400-500 GeV), relatively small R-dependence in data
- Medium response increases $R_{AA}^R / R_{AA}^{R=0.2}$ for most models (Hybrid, LBT, JEWEL)

At high jet p_T (400-500 GeV), relatively small R-dependence in data

• Medium response increases $R_{AA}^{R}/R_{AA}^{R=0.2}$ for most models (Hybrid, LBT, JEWEL)

PbPb 404 μb⁻¹, pp 27.4 pb⁻¹ anti- k_{T} , $|\eta_{iet}| < 2$

- CMS 0-10%
- PYQUEN
- PYQUEN w/ wide angle rad
- JEWEL
- JEWEL w/o recoil

- At low jet p_T (40-140 GeV), ALICE data shows R_{AA} (R=0.6) < R_{AA} (R=0.2)
- Various model (with and without medium response) do or do not describe data

Yeonju Go

 At low jet p_T (40-200 GeV), ATLAS data shows R_{CP} (R=0.5) > R_{CP} (R=0.2) tension between ALICE and ATLAS

• At low jet p_T (40-200 GeV), **ATLAS** data shows R_{CP} (R=0.5) > R_{CP} (R=0.2)

tension between ALICE and ATLAS

• Some models (e.g. Coupled jet-fluid, LBT) with medium response describe ATLAS data

Yeonju Go

with increasing R ...

- Tension between ALICE and ATLAS measurements; but, there are differences:
 - ➡ ALICE charged-particle jets vs. ATLAS all jets
 - \Rightarrow ALICE R_{AA}(0.6)/R_{AA}(0.2) vs. ATLAS R_{CP}(0.5)/R_{CP}(0.2)
 - ALICE uses new machine learning technique vs. ATLAS fake-jet rejection via fragmentation requirement
 - \rightarrow different η ranges
 - ALICE: R_{AA}(R=0.6); |η|<0.3, R_{AA}(R=0.2); |η|<0.7
 - ATLAS: |η|<2.1

 Quark/gluon fraction difference in different R \rightarrow Larger R \rightarrow less quark (more gluon) fraction \rightarrow more E-loss (Lower RAA)

• One could utilize **R**_{AA} of boson-tagged jets or jets at forward rapidity (dominated by quark-jets)

to de-weight the color-charge dependent E-loss effect in the double RAA ratio

In *pp* collisions, different p_T slope results in different R_{AA}
 ⇒ steeper p_T distribution → Lower R_{AA}

In pp collisions, different pT slope results in different RAA \rightarrow steeper p_T distribution \rightarrow Lower R_{AA}

- Different R have different p_T slope in pp collisions
- Instead of R_{AA}, other observables (e.g. S_{loss}, Q_{AA}) can be measured to de-weight the p_T slope effect

Q^F 0.18 ∽_⊢ 0.16 Hard Prede 2023 March 26-31

Summary

- Jets are modified by medium and simultaneously modify the medium
- Understanding medium response is important
- Medium response sensitive observables
 - \rightarrow e.g. Jet-hadron correlation, fragmentation functions, shape, R-dependent R_{AA}, jet mass, axis difference, angularity, baryon/meson ratio, ...
- Models predict significant differences in these observables w/ and w/o medium response
 - Some data and models are consistent with medium response
- More systematic studies between different models is crucial
- Precise experimental measurements for various observables can help constraining models

precise jet measurements, QGP bulk properties, in-medium thermalization information, ...

List of talks related

Experiment

ALICE R-dependent R_{AA} by C. Pliatskas on Tue. 9:00 AM

STAR Jet Shape by T. Pain on Tue. 11:10 AM

ALICE Acoplanarity broadening by Y. HOU on Tue. 12:10 PM

STAR Baryon-to-Meson Ratio in Jet by G. D-GAU on Tue. 3:40 PM

ALICE Jet mass and angularity by E. Lesser on Tue. 5:10 PM

ATLAS Color-charge dependent jet quenching using photon+jets by C. McGinn on Wed. 9:00 AM

PHENIX Jet measurements on Wed. 2:20 PM

ALICE Angle between jet axis by R. C-Torres on Wed. 5:50 PM

STAR Photon-jet and hadron-jet correlations by Y. He on Thu. 9:40 AM

Theory

- JEWEL+v-USPhydro by L. Barreto on Tue. 9:00 AM
- 3D structure of jet-induced diffusion wake by Z. Yang on Tue 9:40 AM Minijet quenching in jet+hydro evolution by C. Gale on Tue. 11:10 AM
- *Comparative multi-probe study of jet energy-loss* by R. M.-Yazdi on Tue. 2:20 PM
- Efficient description of medium response by J. C-Solana on Tue. 3:20 PM
- Enhancement of baryon-to-meson ratios by G.-Y. Qin on Wed. 9:20 AM
- Forward jet measurements by D. Pablos on Wed. 11:10 AM
- Probing short-length structure of QGP by K. Rajagopal on Wed. 11:50 AM
- Unbiased quantification of jet energy loss by J. M. Silva on Wed. 2:00 PM
- Thermalization of a jet wake by F. Zhou on Thu. 3:20 PM
- Multi-scale jet-medium interactions by Y. Tachibana on Thu. 3:40 PM

Takeaway (1)

- Enhancement of soft particles at large angles in jets
 - Significant medium response effect found
- In opposite-jet direction, tension in hadron yield between data (*ATLAS* and CMS)
 different background subtraction method introduce different physics interpretation
 - different background subtraction meth
 (1) diffusion wake vs. (2) MPI

Takeaway (2) : Radius-dependent Jet RAA

- At high p_T , mild R-dependence found in **CMS**
- At low p_T , tension between data (ATLAS vs. ALICE)
- Interpretation of R-dependence R_{AA} (*complicated*!)
 medium response
 - color-charge difference
 - \rightarrow p_T shape difference in pp collisions
- Tensions between various models
 further systematic studies will be needed
- Future beneficial measurements
 - jets with high quark fraction e.g. jets at forward rapidity, boson-tagged jets, inclusive jets at RHIC, ...

. . .

Structure formed from Medium Response in Models

- Enhancement in jet direction; Mach-cone like structure
- Depletion in the opposite direction of jet; diffusion wake

Y. Tachibana et al. PRC 95, 044909 (2017)

Jet Shape

CMS, PLB 730 (2014) 243

γ-Jet Fragmentation Function at LHC

R-dependent Jet RAA

- Data compared with many models, and some models include medium response • Some models describe double R_{AA} ratio but not individual R_{AA}, or vice versa

ALICE arXiv:2303.00592v1

R-dependent Jet RAA

- Data compared with many models, and some models include medium response
- Some models describe double R_{AA} ratio but not individual R_{AA}, or vice versa

ALICE arXiv:2303.00592

R-dependent Jet RAA

- Rapidity difference in different R
 - \rightarrow Forward rapidity \rightarrow more quark (less gluon) fraction \rightarrow less E-loss (Higher R_{AA})

