The power and limits of jet substructure in heavy-ion collisions

Alba Soto-Ontoso 11th Hard Probes Aschaffenburg, 27th March, 2023

Jet substructure: going beyond the jet 4-momentum

[Energy-energy correlators: Barata (Tue, 12:30h), Dominguez (Wed, 15:40h), Holguin (Wed, 11:50h), Tamis (Wed, 11:30h)]

Groomed jet substructure: in this talk one splitting observables

= groomed gluon

[Groomed substructure: Cunqueiro (Wed, 11:30h), Ehlers (Tue, 11:10h), Kunnawalkam Elayavalli (Tue 14:40 h), Pablos (Wed, 11:10h), Robotková (Thu, 09:00h), Rybar (Tue, 11:50h), Tachibana (Wed, 15:40h)]

phase-space cut $\frac{\mathrm{d}\sigma}{\mathrm{d}\Theta} = f(E_i, \theta_i)\Theta(\Omega_i - \Omega)$

Groomed jet substructure: 1-splitting observables (2D)

 $k_t = z p_{t,jet} \theta$

Groomed jet substructure: taggers in this talk

[Talks related to other taggers: Guerrero (Thu 09:20 h), Kunnawalkam Elayavalli (Tue 14:40 h)]

Groomed jet substructure: 1-splitting observables (1D)

2022]

Groomed jet substructure: 1-splitting observables (1D)

What can we learn about the QGP by studying 1-splitting observables?

Phase-space for in-medium jet evolution: branching kernel

[Plot generated with JetMed samples courtesy of P.Caucal]

Phase-space for in-medium jet evolution: energy loss

LO=leading order, DL=double logarithm

 $\overset{\text{Gauss.}}{=} \mathscr{B}^{\text{Gauss.}}(k_t), \mathscr{E}(p_t, C_{F/A}, \theta) \quad (\mathsf{DL})$

Status of analytic jet substructure calculations in heavy-ions

[JHEP 04 (2017) 125, PRL 120 (2018) 232001. RD 105 (2022) 11, 114046]

"BDMPS-Z": $P^{\text{vac}}\Theta_{\text{veto}} + \frac{\alpha}{\alpha} \mathscr{B}^{\text{Gauss.}}(k_t), \mathscr{E}(p_t, C_{F/A}, \theta)$ (DL)

Theory developments relevant for jet substructure

Branching kernel

Better medium induced kernels

Andres (Mon, 16:40h) [JHEP 07 (2020) 114, JHEP 03 (2021) 102]

Isaksen (Wed, 14:40h) [JHEP 11 (2021) 125, 2303.12119]

Takacs (Thu, 09:00h) [JHEP 02 (2023) 156]

Phase-space beyond DL Tmed $P^{\text{vac}}\Theta_{\text{veto}} + \frac{1}{d\omega dk_t}$

Theory developments relevant for jet substructure

[PRL 127 (2021) 25, 252301, JHEP 10 (2021) 038]

Energy loss

Theory developments relevant for jet substructure

Are 1-splitting observables well described in proton-proton collisions?

$\mathscr{E}(p_t, C_{F/A}, \theta, n_{VLE})$

Tywoniuk (Wed, 12:30h) [PRL 127 (2021) 25, 252301, JHEP 10 (2021) 038]

Energy loss

1-splitting observables in pp: semi-analytic calculations

1-splitting observables in pp: semi-analytic calculations

[See 2204.10246 for theory (JHEP 2 (2020) 054)-to-data comparisons with SoftDrop]

1-splitting observables in pp: semi-analytic calculations

$\mathcal{O}(1)$ non-perturbative corrections for RHIC and ALICE kinematics

$\Theta(z > 0.1)$

[See 2204.10246 for theory (JHEP 2 (2020) 054)-to-data comparisons with SoftDrop]

1-splitting observables in pp: MC results

1-splitting observables in pp: MC results

$\mathcal{O}(1)$ discrepancies between general purpose MCs and data in proton-proton

	0.006	
	ATLAS	
Ğ	_ <i>pp</i> 5.02 TeV, 260 pb⁻¹	$501 < p_{T}^{\text{jet}} < 1000 \text{ GeV}$
	anti- $k_t R = 0.4$ jets, $ y < 2.1$	
	$z_{\rm cut} = 0.2, \beta = 0$	Data
	0.004	DVTUA 8

1-splitting observables in PbPb: phase-space analysis

1-splitting observables in PbPb: role of critical angle

1-splitting observables in PbPb: role of critical angle

1-splitting observables in PbPb: role of critical angle

Unambiguous experimental evidence of color decoherence (or medium modified splitting functions) has yet to be achieved

 $--- \propto P^{\text{vac}}(E,\theta) \mathscr{E}(p_t, C_{F/A}, \theta)$

n PRL 128 (2022) 102001, 2022

A new take on jet substructure in heavy-ions at HL-LHC

[Work in progress with L.Cunqueiro, J.Holguin, D.Pablos, M.Spousta, A.Takacs and M.Verweij]

A new take on jet substructure in heavy-ions at HL-LHC

[Work in progress with L.Cunqueiro, J.Holguin, D.Pablos, M.Spousta, A.Takacs and M.Verweij]

Sensitivity to hadronisation in pp collisions

MC results in pp collisions

[Hybrid: JHEP 10 (2014) 019, Jetscape: PRC 102 (2020) 5, 054906, Jetmed: PRL 120 (2018) 232001, Jewel: EPJC 60 (2009) 617-632]

MC results in pp collisions

[Hybrid: JHEP 10 (2014) 019, Jetscape: PRC 102 (2020) 5, 054906, Jetmed: PRL 120 (2018) 232001, Jewel: EPJC 60 (2009) 617-632]

$p_t > 950 \text{ GeV}, R = 0.4$

 $k_{t,\text{cut}} = 8 \text{ GeV}$

Jewel

[Samples provided by M. Verweij Subtraction as in EPJC 82 (2022) 11, 1010]

Lower values of $k_{t,cut}$ to tag medium induced emissions?

Hadronisation Medium induced + [Yeonju Go talk Mon (17:30h)] emissions

Underlying event

[PRC 102 (2020) 4, 044913]

Lower values of $k_{t.cut}$ to tag medium induced emissions?

Exploit dead-cone suppression of vacuum radiation to access a clean, pQCD regime of medium induced emissions Wed parallel session 11-12:30h

[arXiv:2211.11789, PRD 69 (2004) 114003]

erlying event [PRC 102 (2020) 4, 044913]

Conclusions

One splitting observables in heavy-ion collisions are sensitive to

$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} \propto P^{\mathrm{vac,med}}(E,\theta) \mathscr{E}(p_t, C_{F/A}, \theta, n_{\mathrm{VLE}})$

 Description of pp baseline is crucial for meaningful interpretation of data Evidence of jet substructure modification (i.e. not E-loss) remains elusive Exploit HL-LHC to maximise sensitivity to pQCD-like in-medium physics

Outlook

Better parton showers for proton-proton

Collisions [PanScales: JHEP 11 (2022) 019 , JHEP 11 (2022) 020]

pQCD as design guideline of in-medium jet observables

Beyond leading-log understanding of in-medium jet physics [P. Arnold, S.Iqbal et al 2015-]

Jet substructure in Hard Probes 2024

(Hopefully) exciting new results with Run3 data

