Open heavy flavour: experiment

Zaida Conesa del Valle Laboratoire de Physique des 2 infinis Irène Joliot-Curie - IJCLab (CNRS/IN2P3, Université Paris-Saclay)

Disclaimer: only a selection of the results could be shown (time limit)

Hard Probes 2023, 27 March 2023, Aschaffenburg (Germany)

Why heavy flavours?

Z.Conesa del Valle

Hard Probes 2023

Why heavy flavours?

- Heavy quarks are produced in initial hard scatterings with large $Q^2 \rightarrow$ calculable with pQCD.
- Large masses $m_b > m_c \gg \Lambda_{QCD} \rightarrow$ short formation time \rightarrow experience whole medium evolution
- Interactions with the medium don't change the flavour, but can modify the phase-space distribution. lacksquareThermal production rate in the QGP is expected to be 'small'. \rightarrow destruction or creation in the medium is difficult

2

Hard Probes 2023

Why heavy flavours?

- Heavy quarks are produced in initial hard scatterings with large $Q^2 \rightarrow$ calculable with pQCD.
- Large masses $m_b > m_c \gg \Lambda_{QCD} \rightarrow$ short formation time \rightarrow experience whole medium evolution
- Interactions with the medium don't change the flavour, but can modify the phase-space distribution. Thermal production rate in the QGP is expected to be 'small'.
 → destruction or creation in the medium is difficult
- Factorization approach:

$$\frac{d^2\sigma}{dp_{\rm T}dy}({\rm AB} \to {\rm CX}) \propto \sum_{\rm abcd} \int_0^1 dx_{\rm a} \int_0^1 dx_{\rm b} f_{\rm A}^{\rm a}(x_{\rm a}, \zeta)$$
Parton d

- Fragmentation functions assumed to be universal across collision systems.
- For the quarkonium case, the binding of the quark pair involves soft scales, non-perturbative nature.

 $Q^2 f_{\rm B}^{\rm b}(x_{\rm b},Q^2) \frac{{\rm d}\sigma}{{\rm d}t} ({\rm ab} \rightarrow {\rm cd}) D_{\rm c}^{\rm C}(z_{\rm c},Q^2)$

listribution ctions Partonic cross section

Fragmentation function

What can we learn?

Sensitive to **fragmentation / hadronisation**

•

lacksquare

- Scrutinize hadron formation / nature

Initial state effects

saturation / \bullet modification of PDFs in nuclei

. . . Fragmentation fraction universality being questioned by recent LHC data.

Underlying event / multiple parton interactions

Interplay between soft/hard processes Multiple parton interaction (MPI) contribution

Final state effects

energy loss \bullet

. . .

Hard Probes 2023

What can we learn?

Sensitive to **fragmentation / hadronisation**

•

- Scrutinize hadron formation / nature

Initial state effects

saturation / \bullet modification of PDFs in nuclei

. . .

Understand particle production across collision system size.

Investigate the source of collective effects.

Z.Conesa del Valle

Fragmentation fraction universality being questioned by recent LHC data.

Underlying event / multiple parton interactions

Interplay between soft/hard processes Multiple parton interaction (MPI) contribution

Final state effects

- energy loss \bullet
- . . .

vields)

Saturation, Modification of PDFs in nuclei

- Precise differential measurements (p_T , y) at the LHC
- **Constrain nuclear PDFs** down to small Bjorken-x (~10⁻⁵), and possible final state effects

FCEL: Arleo et al, JHEP 01 (2022) 164 nCTEQ: Kovarik et al, Phys. Rev. D93 (2016) 085037 nCTEQnHFE: Kusina et al, <u>Phys. Rev. D104 no. 1, (2021) 014010</u> EPPS16: Eskola et al., <u>Eur. Phys. J. C77 (2017) 163</u>

LHCb, D⁰, <u>arXiv:2205.03936</u> LHCb, B⁰, B⁺, A_b, <u>PRD99 (2019) 052011</u> ALICE, JHEP 01 (2022) 174 ALICE, JHEP 12 (2019) 092 ALICE, Λ_c, <u>arXiv: 2211.14032</u>

Z.Conesa del Valle

Z.Conesa del Valle

Hard Probes 2023

$$R_{AB}^{\text{probe,CC}} = \frac{dN_{AB}^{\text{probe,CC}}}{\langle N_{\text{coll}} \rangle^{\text{CC}} \cdot dN_{\text{NN}}^{\text{probe}}} \longrightarrow {}^{\int b} R_{AB}^{\text{probe}} = \frac{1}{|A|}$$

Energy loss

Energy loss: R_{AA} Interaction of heavy quarks with the medium Colour charge and parton mass dependence.

Elliptic flow v_2 Initial spatial anisotropy and re-interactions

Triangular flow v_3 Fluctuations in the initial state

Charm hadrons in medium

- Precise measurements of R_{AA} and v_2 in a wide p_T interval \bullet
- Similar results at RHIC and at the LHC despite different kinematics \bullet
- Significant energy loss of charm in medium \bullet
- **Positive v₂:** participation to the collective motion \bullet

ALICE, R_{AA}, <u>JHEP 01 (2022) 174</u> CMS, R_{AA}, , <u>PLB 782 (2018) 474</u> STAR, R_{AA}, <u>Phys.Rev.C 99 (2019) 3, 034908</u> CMS, v₂, PRL 120 (2018) 202301 ATLAS, v₂, Phys.Lett.B 807 (2020) 135595 STAR, v₂, PRL 118 (2017) 21

Beauty hadrons in medium

Hard Probes 2023

CMS, v₂, non-prompt D⁰, <u>arXiv: 2212.01636</u>

Beauty hadrons in medium

- Significant energy loss of beauty in medium
- **Positive v**₂ for $p_T > 2-3$ GeV, lower values for beauty than for charm hadrons

ALICE, R_{AA}, non-prompt D⁰, <u>JHEP 12 (2022) 126</u> CMS, R_{AA}, B+, <u>PRL 119 (2017) 15, 152301</u> CMS, R_{AA}, non-prompt D⁰, PRL 123 (2019) 022001 ATLAS, v₂, b to mu, <u>Phys.Lett.B 807 (2020) 135595</u> ALICE, v₂, b to e, <u>Phys.Rev.Lett. 126 (2021) 16, 162001</u> CMS, v₂, non-prompt D⁰, <u>arXiv: 2212.01636</u>

- Suggest R_{AA} values for **b-jets higher than for inclusive jets** in central collisions \bullet
- Similar trend for peripheral collisions.
- Possible influence of b-jet fragmentation and/or \bullet mass effect on parton energy loss (expected to be small at large p_T)?

Moving to higher p_T? b-jets in medium

ATLAS, arXiv: 2204.13530

LIDO: W. Ke et al, Phys. Rev. C 98, 064901 (2018), Phys. Rev. C 100, 064911 (2019), Dai et al: <u>Chinese. Phys. C 2020, 44:104105</u>

Looking at the energy distribution? b-jet shape

 Δr : radial distance between the track and the jet axis ρ : normalised profile of charged particles in jets

- Jet-track correlation $p_T^{jet} > 120 \text{ GeV}, p_T^{track} > 1 \text{ GeV}$ ullet
- Energetic core (close to jet axis) stays intact, intermediate part is reduced, and enhancement of the activity on the surface/edges and far away from the jet.
- The modification is more pronounced for b-jets than for inclusive jets, and is already present in pp. b-jet fragmentation? Dead-cone effect (mass effect expected to be small at large p_T)? Increased medium response to heavy quark propagation?

CMS, <u>arXiv:2210.08547</u>

Jet substructure: energetic component close to jet axis

Jet substructure modified: core stays intact, intermediate part is reduced, larger activity in the border and far away

Hard Probes 2023

Looking at the energy distribution? b-jet shape

 Δr : radial distance between the track and the jet axis ρ : normalised profile of charged particles in jets

- Jet-track correlation $p_T^{jet} > 120 \text{ GeV}, p_T^{track} > 1 \text{ GeV}$
- Energetic core (close to jet axis) stays intact, intermediate part is reduced, and enhancement of the activity on the surface/edges and far away from the jet.
- The modification is more pronounced for b-jets than for inclusive jets, and is already present in pp. b-jet fragmentation? Dead-cone effect (mass effect expected to be small at large p_T)? Increased medium response to heavy quark propagation?

CMS, <u>arXiv:2210.08547</u>

Jet substructure: energetic component close to jet axis

Jet substructure modified: core stays intact, intermediate part is reduced, larger activity in the border and far away

Hard Probes 2023

Going rarer? B_c+ in PbPb

\bullet

- Moderate suppression at high p_{T} . ullet
- Less suppression than other heavy mesons (except for B_{s^+}). \bullet

Unique charm-bottom state \rightarrow sensitive to both energy loss (suppression) and recombination

CMS, Phys. Rev. Lett. 128, 252301 (2022)

- \bullet

What have we learned from data?

Positive v₂: $v_2(N_{ch}) > v_2(prompt D^0) > v_2(non-prompt D^0)$ at intermediate p_T , similar at high p_T suggestive of participation of heavy quarks to the system collective motion and might thermalise

- R_{AA} hierarchy at intermediate p_T, $R_{AA}(ch/\pi) < R_{AA}(prompt D) < R_{AA}(non-prompt D/J/\psi, B^+) < R_{AA}(B_s)$ consistent with **parton mass energy loss dependence**
- \bullet

What have we learned from data?

p_{_} (GeV/c) CMS, B_c, <u>Phys. Rev. Lett. 128, 252301</u> (2022) CMS, v₂, N_{ch}, <u>PLB 776 (2018) 195-216</u> CMS, v₂, non-prompt D⁰, <u>arXiv: 2212.01636</u> ALICE prompt D⁰, <u>JHEP 01 (2022) 174</u>

Positive v₂: $v_2(N_{ch}) > v_2(prompt D^0) > v_2(non-prompt D^0)$ at intermediate p_T , similar at high p_T suggestive of participation of heavy quarks to the system collective motion and might thermalise

Going further, charm data-model comparison

- Models shown here include: nPDF, collisional+radiative processes, hydrodynamic expansion, recombination
- Most models provide a good description of both R_{AA} and v₂

• Data-model comparison set constraints on heavy quark spatial diffusion coefficient $1.5 < 2\pi D_s T_c < 4.5$ at $T_{pc} = 155$ MeV

 $\rightarrow \tau_{charm} = (m_{charm}/T)D_s(T) \approx 3-9 \text{ fm}/c \text{ for } m_c = 1.5 \text{ GeV}$

Z.Conesa del Valle

- hydrodynamic expansion, recombination

Z.Conesa del Valle

Going further, beauty/charm data-model comparison

TAMU: He et al., <u>PLB735 (2014) 445-450</u> CUJET: She et al., <u>Chin. Phys. C 43 (2019) 044101</u> LGR: Li et al., <u>EPJC 80 (2020) 671</u>, <u>EPJC 80 (2020) 1113</u> MC@sHQ+EPOS2: Nahrgang et al., <u>PRC 89 (2014) 014905</u>

Z.Conesa del Valle

- R_{AA} (non-prompt D⁰) for $p_T > 0$ is 1.00 ± 0.10 (stat.) ± 0.13 (syst.) +0.08 -0.09 (extr.) ± 0.02 (norm.) in 0-10%
- For $p_T > 5$ GeV, the ratio is larger than unity \rightarrow larger suppression of prompt D⁰
- LGR model shows a strong influence of the **mass dependence** of parton energy loss and **coalescence**.

ALICE prompt D⁰, <u>JHEP 01 (2022) 174</u>

ALICE non-prompt D⁰: <u>JHEP 12 (2022) 126</u>

Going further, beauty/charm data-model comparison

TAMU: He et al., <u>PLB735 (2014) 445-450</u> CUJET: She et al., <u>Chin. Phys. C 43 (2019) 044101</u> LGR: Li et al., <u>EPJC 80 (2020) 671</u>, <u>EPJC 80 (2020) 1113</u> MC@sHQ+EPOS2: Nahrgang et al., <u>PRC 89 (2014) 014905</u>

Z.Conesa del Valle

- R_{AA} (non-prompt D⁰) for $p_T > 0$ is 1.00 ± 0.10 (stat.) ± 0.13 (syst.) +0.08 -0.09 (extr.) ± 0.02 (norm.) in 0-10%
- For $p_T > 5$ GeV, the ratio is larger than unity \rightarrow larger suppression of prompt D⁰
- LGR model shows a strong influence of the **mass dependence** of parton energy loss and **coalescence**.

ALICE prompt D⁰, <u>JHEP 01 (2022) 174</u>

ALICE non-prompt D⁰: <u>JHEP 12 (2022) 126</u>

Going further, beauty/charm data-model comparison

TAMU: He et al., <u>PLB735 (2014) 445-450</u> CUJET: She et al., <u>Chin. Phys. C 43 (2019) 044101</u> LGR: Li et al., <u>EPJC 80 (2020) 671</u>, <u>EPJC 80 (2020) 1113</u> MC@sHQ+EPOS2: Nahrgang et al., <u>PRC 89 (2014) 014905</u>

Z.Conesa del Valle

- R_{AA} (non-prompt D⁰) for $p_T > 0$ is 1.00 ± 0.10 (stat.) ± 0.13 (syst.) +0.08 -0.09 (extr.) ± 0.02 (norm.) in 0-10%
- For $p_T > 5$ GeV, the ratio is larger than unity \rightarrow larger suppression of prompt D⁰
- LGR model shows a strong influence of the **mass dependence** of parton energy loss and **coalescence**.

ALICE prompt D⁰, <u>JHEP 01 (2022) 174</u>

ALICE non-prompt D⁰: <u>JHEP 12 (2022) 126</u>

Moving to smaller systems?

- Charm hadron spectra does not present strong modifications in pPb wrt pp, \bullet but those expected from nPDF/saturation.
- Heavy flavour v₂ follows a smooth evolution with charged-particle multiplicity
 - non-zero values for charm in pp and pPb collisions
 - important role of initial state effects and/or influence of final state effects?

ATLAS, pp, PRL 124 (2020) 082301 ATLAS, PbPb, PLB 807 (2020) 135595 CMS, pPb, prompt D⁰, PRL 121 (2018) 8, 082301 CMS, pPb, non-prompt D⁰, <u>PRL 813 (2021) 136036</u> ALICE, pPb, <u>JHEP 2019 (2019) 92</u> LHCb, D⁰, <u>arXiv:2205.03936</u>

- Heavy-flavour decay electron v₂ is consistent \bullet with zero at 27 GeV, whereas v₂ at 54.4 GeV is non-zero and consistent with that at 200 GeV.
- TAMU and PHSD calculations underestimate it. \bullet
- Trend consistent with number of constituent \bullet quark scaling (NCQ) estimate.
- Suggest that charm quarks participate to the ulletcollective motion of the medium and might reach local thermal equilibrium.

Moving to lower energy?

PHSD: Song et al., <u>Phys. Rev. C 92 (2015) 014910</u>., <u>Phys. Rev. C 96 (2017) 014905</u>

Unexpected charm fragmentation fractions in pp

- \bullet system. Universality?
- \bullet results. The data lie at the upper edge of the theoretical pQCD bands.

Significant difference of the charm fragmentation fractions in pp vs. e⁺e⁻ and ep collisions. Evidence of the dependence of the parton-to-hadron fragmentation fractions on the collision

Updated total charm cross section calculation, $\sim 40\%$ higher than the previously published

Unexpected charm fragmentation fractions in pp

- \bullet system. Universality?
- \bullet results. The data lie at the upper edge of the theoretical pQCD bands.

Significant difference of the charm fragmentation fractions in pp vs. e⁺e⁻ and ep collisions. Evidence of the dependence of the parton-to-hadron fragmentation fractions on the collision

Updated total charm cross section calculation, $\sim 40\%$ higher than the previously published

Similar influence for charm baryons and mesons (pp)?

- that observed in the light-flavour sector.

Observed a strong p_T dependence of the baryon-to-meson ratios in the charm sector, similar to

Likely due to a redistribution of momentum, rather than to an overall enhancement of baryon yield.

Similar influence for beauty baryons and mesons (pp)?

- Strong p_T dependence of the baryon-to-meson ratios.
- vacuum fragmentation.

Z.Conesa del Valle

Evolution of $B_s^{0/B^{0}}$ with charged-particle multiplicity at low p_{T} , no dependence at intermediate-to-large p_{T} . Expected in a scenario where low- p_{T} production is affected by **coalescence**, whereas high p_{T} is dominated by

Can charm-jet studies help constrain hadronisation (pp)?

- Hint of different (softer) fragmentation for Λ_c than D⁰
- PYTHIA 8 calculation with colour-reconnection seems to describe the trend ullet

Z.Conesa del Valle

Monash; P. Skands, et al, <u>Eur.Phys.J.C74 n.8 (2014) 3024</u> CR-BLC; JR Christiansen, et al, JHEP 08 (2015) 003

- Expected trend of the D_{s^+} / D^0 and B_{s^0} / B^+ ratios in pp
- non-strange meson rates
- \bullet

STAR, PRL 127 (2021) 092301 ALICE, arXiv:2204.10386 ALICE, PLB 827 (2022) 136986 CMS, PLB 829 (2022) 137062

Z.Conesa del Valle

Are meson ratios affected in medium?

In central HIC, charm/beauty-strange mesons seem enhanced at intermediate p_T with respect to

Consistent with the **coalescence in-medium** picture (with enhanced strange quark production in medium)

B0

B+

Are baryon ratios affected in medium?

- ALICE observes a larger modification of the p_T distribution with increasing charged-particle multiplicity. No significant evolution observed by LHCb (in peripheral collisions)
- Consistent Λ_c/D^0 ratios at high p_T across collision systems (pp, pPb, PbPb)
- Interplay of (energy loss and) **fragmentation and coalescence** in medium?

LHCb, arXiv:2210.06939 ALICE, arXiv:2112.08156

- Entering the heavy flavour precision era
- Simultaneous comparison of (R_{AA} , v_n , jet shapes...) measurements with model calculations improves our understanding of heavy quark interaction with the medium
- The origin of the collective motion in small systems is still under debate. Important role of initial state effects and/or influence of final state effects ?
- Role of fragmentation and hadronisation is under scrutiny, both in medium and in vacuum.

Apologies for all those results I could not present, e.g. HF decay leptons (ALICE, STAR, PHENIX), non-prompt/prompt D⁰ vs mult, correlations,....

Special thanks to A. Dainese for suggestions

Summary

Hard Probes 2023

Many interesting talks coming!

Tuesday, HF&Onia

- R. Litvinov LHCb, open HF pPb & PbPb
- ✤ K. Mattioli, LHCb, fixed target
- A. Kalteyer, ALICE, HF hadronisation
- ✤ S. Chandra, CMS, Λ_c & D⁺ pp & PbPb
- Y. Zhang, CMS, HF flow pp & pP
- P. Lu, ALICE, prompt/non-prompt J/ψ

Wednesday, HF&Onia

- M. Völkl, ALICE, beauty pPb & PbPb
- ✤ S. Politano, ALICE, D_{s1}* D_{s2}* & D*+ spin pp

- ✤ M. Stojanovic, CMS, D⁰ PbPb
- R. Arnaldi, NA60+, open HF & onia

Wednesday, Jet

- S. Tapia, ATLAS, b-jet PbPb
- ✤ P. Dhankher, ALICE, D⁰-jet
- A. Palasciano, ALICE, D/∧_c jet,HF correlations

Thursday, HF&Onia

T. Sheng, CMS, B mesons pp & PbPb

Plenary

* A. Rossi, hadronisation, Thursday

* A. Dubla, summary talk, Friday

Big thank you to the organisers!

Danke

Additional material

Charm fragmentation fractions in pp

ALI-PUB-500740

ALICE, Phys. Rev. D 105 (2022) L011103

Z.Conesa del Valle

ALI-PUB-500745

Λ_c/D^0 ratio in PbPb

Described by transport calculations that include both fragmentation and coalescence \bullet mechanisms in medium.

ALICE, arXiv:2112.08156

B^os/B^o vs. multiplicity in pp

- Lack of dependence with multiplicity at backward rapidity.
- Mechanism possibly related to local particle density in a similar rapidity interval to that of the production of the B

LHCB-PAPER-2022-001, arXiv: 2204.13042

Azimuthal anisotropy of D⁰ in small systems

- **In pp**, positive prompt D⁰ v_2^{sub} at high multiplicity \rightarrow collectivity being developed for charm similar to that of light hadrons.
- Comparable prompt D⁰ v_2^{sub} values in pp and p–Pb at similar multiplicities.
- Results consistent with v_2 flavour hierarchy for $2 < p_T < 5$ GeV/c in p–Pb v_2 (non-prompt D⁰) < v_2 (prompt D⁰). Compatible with scenarios where v_2 is generated either via final state scatterings or via a large impact of initial state effects.

CMS, Phys. Rev. Lett. 121, 082301 (2018) CMS, Phys. Lett. B 813 (2021) 136036

Dong et al, <u>Ann. Rev. Nucl. Part. Sci. 69 (2019) 417-445</u> Zhang et al, <u>Phys. Rev. D 102, 034010 (2020)</u>

Hard Probes 2023

B_c^+ meson in PbPb

CMS, Phys. Rev. Lett. 128, 252301 (2022)

Z.Conesa del Valle

v₂ at RHIC

ATLAS, pp, <u>PRL 124 (2020) 082301</u>

Hard Probes 2023

Are baryon ratios affected in medium?

- - ALICE observes a larger modification of the p_T distribution with increasing charged-particle multiplicity. No significant evolution observed by LHCb (in peripheral collisions)
 - Consistent Λ_c/D^0 ratios at high p_T across collision systems (pp, pPb, PbPb)
 - Interplay of (energy loss and) **fragmentation and coalescence** in medium?

LHCb, arXiv:2210.06939 ALICE, arXiv:2112.08156

