# **Open heavy flavors: Theory**



### Santosh Kumar Das School of Physical Science Indian Institute of Technology Goa Goa, India









## □ R<sub>AA</sub> vs v<sub>2</sub>: Heavy quark diffusion D<sub>s</sub>, Heavy quark thermalization

## Recent developments New observables, Radiation, Hadronization Non-equilibrium effect, Small system

□ Heavy quark as a probe of Initial stage EM fields, Glasma, Verticity

## **Heavy Quark in Quark-Gluon Plasma**



 $> m_{c,b} >> \Lambda_{QCD} \text{ pQCD initial production}$   $> m_{c,b} >> T_{RHIC,LHC} \text{ negligible thermal production (not @FCC)}$   $> \tau_0 < 0.08 \text{ fm/c} << \tau_{QGP} \text{ witness of all the QGP evolution}$   $> \tau_{th} \approx \tau_{QGP} >> \tau_{q,g} \text{ carry more information of their evolution}$   $> m_{c,b} >> gT_{RHIC,LHC} \text{ soft scatterings } \rightarrow \text{ Brownian motion(low p charm)}$ 

## Studying the HF dynamics in HIC



## $R_{AA}$ and $v_2$ Comparison with models



ALICE, JHEP 01 (2022) 174

Most of the models able to describe both  $R_{AA}$  and  $v_2$  in certain  $p_T$  domain

Simultaneous description of  $R_{AA}$  and  $v_2$  is still a challenge in the whole measured  $p_T$  and centrality ranges, colliding energy, system size.

## Summary on the build-up of $v_2$ at fixed $R_{AA}$



 $R_{AA}$  and  $V_2$  are correlated but still one can have  $R_{AA}$  about the same while  $v_2$  can change up to a factor 2-3  $\gamma(T)$  + Boltzmann dynamics+ hadronization+ hadronic phase

## **Heavy quark diffusion**



He, Fries, Rapp, PRL,110, 112301 (2013)

Scardina, Das, Minissale, Plumari, Greco

 $2\pi T D_s \propto T^2$ , corresponds to a constant thermalization time.

#### Memory effect can impact the HQ thermalization

Ruggieri, Pooja, Jai Prakash, Das, PRD, 106 (2022)

## **Recent Developments**

### Heavy-light event-by-event correlation



#### This can put further constrain on heavy quark transport coefficients

Plumari, Coci, Minissale, Das, Sun, Greco PLB 805 (2020) 135460

### Heavy quark radiation in T-matrix approach



📕 0.194 GeV 📕 0.258 GeV 📕 0.320 GeV 📕 0.400 GeV

Liu, Rapp, JHEP 08 (2020) 168

- Perturbative processes experience a strong suppression due to thermal mass
- **\*** Nonperturvative effect enhance the radiative contribution at low p and T.
- **\*** But its magnitude is small compared to the elastic contribution.

### Heavy quark transport coefficients: Non-equilibrium effect



#### System size scan of D meson $R_{AA}$ and $v_2$



System size vs Eccentricity

R. Katz et. al, PRC,102 (2021)

### In-medium heavy quark potential from the open heavy flavor observables



High pT are dominated by the short-range Yukawa potential. Low pT are dominated by the long-range string potential

#### **Dynamical Radiative and Elastic Energy loss Approach-A**



**Exploit differences in temperature profiles** 

Can describe the data at high  $\boldsymbol{p}_{T}$ 

**\*Djordjevic's Talk (Tus)** 

Zigic, Salom, Auvinen, Huovinen, Djordjevic FIP 10(2022) 957019

### Heavy quark hadronization

#### Seraudo's Talk (Wed)

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

8 9 10

 $\Omega_c^0$  / D<sup>0</sup>

7



### Charm hadrons coalescence plus fragmentation in pp



## $R_{pA}$ and $v_2$ puzzle of D mesons in p-Pb collisions



v2: charm quark interaction RpPb: Cronin effect

No radiation No T and p-dependence interaction

Cronin effect enhances the charm quark yield at relatively high pT and cancels out the effect from jet quenching.

Lin's Talk (Wed)

Zhang, Zheng, Shi, Lin, arXiv: 2210.07767[nucl-th]

## Heavy quark as a probe of Initial stage

## Heavy quark as a probe of Initial stage

#### (Adapted from M. Ruggieri)







**Impact of Glasma phase** 

**Electromagnetic field** 

Vorticity

### Initial Glasma in Pre-equilibrium phase can induce strong diffusion

Mrowczynski, EPJA 54 (2018) Ruggieri and Das, PRD98 (2018)



Liu, Plumari, Das, Greco, Ruggieri, PRC, 102 (2020)



Boguslavski, Kurkela, Lappi and J. Peuron, JHEP (2020)

 $\frac{\text{Correlator method}}{\langle \dot{p}_i(t)\dot{p}_i(t')\rangle} = \frac{g^2}{2N_c} \langle E_i^a(t)E_i^a(t')\rangle$ 

Strong heavy quark diffusion in Glasma:

- \* Can affect the D-Dbar correlation
- **Strong diffusion enhance the R<sub>AA</sub> in AA**
- Leads to large v<sub>2</sub> to have the same R<sub>AA</sub>

#### Impact of Glasma phase on nucleus-nucleus collisions:





Sun, Coci, Das, Plumari, Ruggieri, Greco PLB, 798 (2019) 134933

### Heavy quark directed flow in EM fields



\* Order of magnitude larger than light hardon  $v_1$ 

 Opposite v<sub>1</sub> for charm and anti-charm

 $\Delta v_1(\mathbf{D}) = \mathbf{v}_1(\mathbf{D}^0) - \mathbf{v}_1(\overline{\mathbf{D}}^0)$ 

Das, Plumari, Chartarjee, Scardina, Greco, Alam Phys. Lett. B, 768 (2017) 260

#### Heavy meson directed flow at RHIC & LHC:



### Heavy quark as a probe of initial stage: vorticity







Chatterjee and Bozer, PRL, 120 (2018)



Oliva, Plumari, Greco, JHEP (2021)

- Large directed flow of heavy meson than the light hadron
- \* Charm quarks distribution are not tilted

- \* Yet to understand the  $\Delta v_1$  sign change from RHIC to LHC
- Computation of early stage EM field is very essential

Sun, Plumari, Greco, PLB, 861 (2021)

### Heavy quark directed flow within PHSD @ RHIC



#### The splitting is larger as a function of momentum

#### Das, Soloveva, Song, Bratkovskaya Under preparation



#### Impact of electromagnetic field on heavy quark elliptic flow is negligible

## **Conclusions and Perspectives:**

- **\*** Present calculations indicate  $\tau_{th} \sim 2-6$  fm/c for low  $p_T$  charm quark.
- More precision data and additional observables can further constrain the D<sub>s</sub> Heavy-light event-by-event correlation, System size scan, D-Dbar correlation, B meson, Δ<sub>c</sub>, p->0,...
- **Time evolution of EM field in HIC** -> opposite sign of HF v1 from RHIC to LHC
- Heavy quark can act as an excellent probe of the early stage dynamics Pre-equilibrium phase, EM fields, Vorticity
- Time to focus heavy quark dynamics in small system, Bean energy scan.... So far major focus: Highest RHIC energy and LHC energies Recent STAR data on HF decay electron@ 54.4 GeV and 27 GeV...





## Momentum evolution starting from a $\delta$ (Bottom)



### **Angular De-correlation of***cc***bar:**



Zhu ,Xu, Zhuang, PRL100, 152301 (2008)



DDbar correlation is sensitive to energy loss mechanism

Nahrgang, Aichelin, Gossiaux, Werner PRC,90, 024907 (2014)

> DDbar correlation can disentangle different Energy loss mechanism

> > Cao, Qin, Bass PRC, 95 (2015)

## Impact of T dep. interaction on $R_{AA} - v_2$

