Overview of Recent Experimental Electroweak Probes Results

Hard Probes 2023 Aschaffenburg, Germany March 27

Austin Baty **Rice University**

Electroweak probes

- Prompt bosons access initial state nPDFs, Glauber model
- $\gamma\gamma \rightarrow l^+l^-$ in hadronic collisions
 - QED Process
 - UPCs as reference for QGP studies

- Direct γ , dileptons
 - thermal properties of the medium

Prompt photon RpPb

- Measurements appear consistent at higher pT

- Starting to extend into EMC region
- Strong support for nPDF shadowing

Ratio to CT14

ALICE W bosons in pPb

LHCbZbosons in pPb

- Cross section favors more anti-shadowing and minor shadowing
- Ratio favors nPDF models

CMS Drell-Yan in pPb

- Wide dimuon mass range larger range of x, Q²
- R_{FB} for Z mass window more precise than nPDF models

ge of x, Q² than nPDF models

Finalized sin HP 2020

nce	
)	

ATLAS Midrapidity Z/W in PbPb

- Measure Z/W to test Glauber scaling
- Rising trend in ATLAS data

- CMS data supports downward trend & HG-PYTHIA model
- NN impact parameter + centrality selection effects?

Finalized since HP 2020

CMS Midrapidity Z in PbPb

Ratio

Could also affect interpretation of peripheral suppression of other probes

ALICE Forward Ws in PbPb

- Consistent with both HG-PYTHIA and binary scaling assumptions
- $\sigma_{NN}^{inel} = 41.5 \text{ mb does not improve agreement w/ pQCD calculations}$

10

- Results have correlated T_{AA} uncertainties still some tension

Summary of W/Z in PbPb

• Should clarify b/c differing interpretations (small σ_{inel}^{NN} vs peripheral suppression)

Only W- shown for clarity. See backup for W⁺.

11

 Run 3 will lower stat. and syst. uncertainties Crucial to pay special attention to centrality 'anchor point'

Run: 365512 Event: 130954442 2018-11-09 07:56:44 CEST

UPC Dileptons

 $p_T^{e1} = 8.2 \text{ GeV}$ $p_{T}^{e^2} = 7.4 \text{ GeV}$

 \mathbf{Pb}

 \mathbf{Pb}

STARlight & SuperChic can predict total cross section

arXiv:2207.12781

Finalized since HP 2020

- STARlight & SuperChic can predict total cross section
- Models seem to do worse for higher-energy initial photons

 $UPC \gamma\gamma \rightarrow e^{\top}e$

- 'Core' of α distribution dominated by LO contributions - not perfectly modeled

- 'Core' of α distribution dominated by LO contributions - not perfectly modeled

- Full QED needed to capture b-dependence of photon p_T

$\bigcup PC \gamma \gamma \to \mu^+ \mu$

- 'Core' of α distribution dominated by LO contributions - not perfectly modeled **Finalized since**

- Confirm broadening of α as a function of centrality k_T kicks to muons?
- Not consistent with B-field induced broadening

ATLAS $\gamma\gamma \rightarrow \mu^+\mu^-$ in peripheral AA

ALICE $\gamma\gamma \rightarrow e^+e^-$ in peripheral AA

- Excess at low p_{T,ee} clearly favors models w/ b-dependent photon p_T
- Similar to STAR results

- Full treatment of collision evolution improves agreement w/ direct photons

Dielectrons, Direct γ in PbPb

• dielectron data captures trends of cocktail+QGP+ ρ model (except at 0.7 GeV?)

ALI-PREL-504470

Direct photons with PHENIX

• Shape of low-p_T direct photons analyzed at lower beam energies

PRC 107, 024914 (2023)

Direct photons with PHENIX

- Shape of low-p_T direct photons analyzed at lower beam energies
- Relatively small $\sqrt{s_{NN}}$ dependence of T_{eff}

PRC 107, 024914 (2023)

Dielectrons with STAR

- Different trends of T vs μ_B for low-mass and intermediate-mass regions
- Different contributions from in-medium ρ vs QGP
 - Probe different stages of temperature evolution

ass and intermediate-mass regions um ρ vs QGP ure evolution

Dielectrons with STAR

- Different trends of T vs μ_B for low-mass and intermediate-mass regions
- Different contributions from in-medium ρ vs QGP
 - Probe different stages of temperature evolution

ass and intermediate-mass regions um ρ vs QGP ure evolution

Dielectrons with HADES

- Extremely detailed scan of low mass region at high μ_R
 - 2.55 GeV AgAg collisions
- Looking forward to further updates!

CMS Experiment at the LHC, CERN Data recorded: 2015-Dec-06 21:41:27.033612 GMT Run / Event / LS: 263400 / 88515785 / 849

Observation of $\gamma\gamma \rightarrow \tau\tau$ in AA

Clean signals with little background

28

Observation of $\gamma\gamma \rightarrow \tau\tau$ in AA

- Extract anomalous magnetic moment
- Sensitive to higher-order corrections from new particles BSM test

arXiv:2206.05192 arXiv:2204.13478

- New data constraining nPDFs
- Run 3 will help clarify
- $\gamma \gamma \rightarrow l^+ l^-$ can probe QGP!
 - b-dependence of photon p_T important
- New data to explore T_{eff} vs μ_R

Conclusions

- Data have their normalization fixed so the most central point = 1

Using ATLAS MCGlauber v3.2 data points instead of v2.4 improves agreement

- Run HIJING to calculate N_{coll} and N_{MPI}
- Superimpose N_{coll} Pythia MB events that have the same number of MPIs
 - These events have no QGP physics
- Perform a centrality calibration
- Plot R_{AA} by comparing to cross section from pp collisions
- Geometry biases <b_{NN}> can be biased for different b_{PbPb}
- Centrality selection bias correlations in hard/soft production can cause migration of event with hard processes to higher centrality
 - Leads to depletion in peripheral events

HG-PYTHA

Comparison to ATLAS - Glauber versions

- ATLAS RAA compilation plot uses v2.4 but they also provided v3.2
- CMS & ALICE use v3.2
 - Orange points should be used for a fair comparison

34

SuperCHIC vs Starlight

- None of them simulates a FSR contribution
- In **STARlight formalism** photon spectrum is calculated in impact parameter space, Comput.Phys.Commun. 212 (2017) 258-268

$$d^{2}N/dk_{1}dk_{2} = \int_{b_{1}>R_{1}} db_{1} \int_{b_{2}>R_{2}} db_{2} n(k_{1}, b_{1})n(k_{2}, b_{2}) P_{fn}(b) (1 - P_{H}(b))$$

ſ

dilepton pairs are not formed within either nucleus

ions, <u>SciPost Phys. 11, 064 (2021)</u>

$$\sigma_{N_1N_2 \to N_1XN_2} = \int dx_1 dx_2 n(x_1) n(x_2) \hat{\sigma}_{\gamma \gamma \to X}$$

$$n(x_i) = \frac{\alpha}{\pi^2 x_i} \int \frac{\mathrm{d}^2 q_{i_\perp}}{q_{i_\perp}^2 + x_i^2 m_{N_i}^2} \left(\frac{q_{i_\perp}^2}{q_{i_\perp}^2 + x_i^2 m_{N_i}^2} (1 - x_i) F_E(Q_i^2) + \frac{x_i^2}{2} F_M(Q_i^2) \right)$$

SuperChic includes survival and polarization effects at amplitude level, but not forward neutrons •

Taken from Agnieszka Ogrodnik's slides from ISMD 2022

Probability of forward neutron topology

beam projectiles do not interact hadronically (Glauber calculation)

In **SuperChic** formalism different implementation of the non-hadronic overlap condition of the Pb

35

ALICE Coherent J/Y in UPC

- Coherent part interacts with whole nucleus
- Measured w/ low-pt contribution
- Sensitive to gluon distribution

LHCb Coherent J/Y in UPC

Probes similar region to ALICE forward data

CMS Coherent J/Ψ in UPC

- ZDC tagging technique to 'fill gap'
- Need photon flux to convert to W
- Global trend from data can not be predicted by models well

V₂ in *yp* collisions

