HADES Experimental Highlights

Szymon Harabasz for the HADES collaboration 11th International Conference on Hard and Electromagnetic Probes of High–Energy Nuclear Collisions

On behalf of the HADES Collaboration ~170 members ~26 institutions ~10 countries

Space-time coordinates

- Nov 2002 C+C at $\sqrt{s_{NN}} = 2.7 \text{ GeV}$
- Jan 2004 p+p at $\sqrt{s} = 2.77$ GeV
- Aug 2004 C+C at $\sqrt{s_{NN}} = 2.32$ GeV
- Sep 2005 Ar+KCl (~Ca+Ca) at $\sqrt{s_{NN}} = 2.61$ GeV
- Apr 2006 p+p at $\sqrt{s} = 2.42$ GeV
- Apr 2007 p+p at \sqrt{s} = 3.18 GeV, d+p at $\sqrt{s_{NN}}$ = 2.42 GeV
- Sep 2008 p+Nb at $\sqrt{s_{NN}} = 2.7 \text{ GeV}$
- Apr 2012 Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV
- Jul-Aug-Sep 2014 π⁻ + W/C/polyethylene
- Mar 2019 Ag+Ag at $\sqrt{s_{NN}} = 2.55$ GeV and 2.42 GeV

3

• Feb 2022 p+p at $\sqrt{s} = 3.46$ GeV

High Acceptance Di-Electron Spectrometer

- Fixed target setup
- Acceptance
 - Full in the azimuthal angle
 - From 18° to 85° in the polar angle: adjusted for good coverage around mid-rapidity

New detectors installed since 2019:

- RICH photodetection plane in cooperation with CBM
- Electromagnetic calorimeter
- Set of forward detectors in cooperation with PANDA

Two-fold physics goal

5

Not fully clear how it was in the Antiquity, but the modern era imagines Hades holding a *bident*

Hades (Pluto). From a Statue in the Vatican.

27.03.2023

Two-fold physics goal

Not fully clear how it was in the Antiquity, but the modern era imagines Hades holding a *bident*

Heavy-ion collisions at $\sqrt{s_{NN}}$ = 2-2.4 GeV:

- Microscopic properties of baryon dominated matter
- Equation-of-State
- Observables
 - E-b-e correlations and fluctuations
 - Strangeness production and collective effects
 - Dileptons

Hades (Pluto). From a Statue in the Vatican

27.03.2023

Hard Probes 2023 | Szymon Harabasz

Strong interaction matter at extreme conditions

-15

-10 -5

10

x (fm)

-15

-10 -5

T. Galatyuk et al., EPJA 52 (2016) 5, 131

10

x (fm)

10

x (fm)

27.03.2023

10 15

x (fm)

-10

-15

-10 -5

Electromagnetic probes

- Photons (virtual and real):
 - Don't undergo strong interaction
 - Probe all the stages of heavy-ion collisions
- Radiation from hot and dense matter is isolated by subtracting:
 - First-chance NN collisions
 - Meson decays at the freeze-out

27.03.2023

Electromagnetic spectral function

In vacuum, it is measured in e^+e^- annihilation experiments:

 $R \propto \frac{Im\Pi_{em}}{M^2}$

Intermediate mass region IMR

Perturbative QCD continuum, quark degrees of freedom

Thermal dileptons at high μ_B

Au+Au $\sqrt{s_{NN}}$ = 2.42 GeV 0-40% centrality

Thermal dilepton production rates
L. D. McLerran, T. Toimela, PRD 31 545 (1985)

$$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2} f^B(q_0, T) Im\Pi_{em}(M, q, T, \mu_B)$$

Spectral function

CG FRA: PRC **92** 014911 (2015) CG GSI-Texas A&M: EPJA, **52** 5 131 (2016) CG SMASH: PRC **98** 054908 (2018) HSD: PRC **87** 064907 (2013) PLUTO: J. Phys. Conf. Ser **219** 032039 (2010)

27.03.2023

Thermal dileptons at high μ_B

Au+Au $\sqrt{s_{NN}}$ = 2.42 GeV 0–40% centrality

Thermal dilepton production rates
L. D. McLerran, T. Toimela, PRD 31 545 (1985)

$$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2} f^B(q_0, T) Im \Pi_{em}(M, q, T, \mu_B)$$

Spectral function

Melting of p clearly visible

 Collisional broadening is not sufficient to account for that

ρ melting handled properly by the local thermal equilibrium approach (CG)

CG FRA: PRC **92** 014911 (2015) CG GSI-Texas A&M: EPJA, **52** 5 131 (2016) CG SMASH: PRC **98** 054908 (2018) HSD: PRC **87** 064907 (2013) PLUTO: J. Phys. Conf. Ser **219** 032039 (2010)

27.03.2023

Thermal dileptons at high μ_B

 $\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2}$ $f^B(q_0,T)Im\Pi_{em}(M,q,T,\mu_B)$ **Boltzmann factor**

Au+Au $\sqrt{s_{NN}}$ = 2.42 GeV 0-40% centrality

11

- Boltzmann factor dominates the exponential shape of the spectrum if $Im\Pi_{EM}/M^2$ does not change much with M
- True (average) source temperature not affected by the blue shift

Discovering the QCD "caloric curve"

Lifetime of the fireball

- Thermal radiation is emitted during the whole lifetime of the system
- The integrated yield in 0.3 < M_{ee} / (GeV/c²) < 0.7 is the most sensitive to measure the lifetime
 Heinz and Lee, PLB 259, 162 (1991) Barz, Friman, Knoll and Schulz, PLB 254, 315 (1991) Rapp, van Hees, PLB 753 (2016) 586
- At a phase transition "production" of the latent heat would increase the lifetime

High-quality dilepton data

Ag+Ag $\sqrt{s_{NN}}$ = 2.42 GeV $\sqrt{s_{NN}}$ = 2.55 GeV 0-40% centrality

Ag+Ag at $\sqrt{s_{NN}}=2.55$ GeV

Vector mesons peaks (ω, φ) visible

 Possibility to study cross-sections and in-medium modifications of the spectral shape

 First measurement of the yield above vector meson masses ("Intermediate Mass Region")

Ag+Ag at $\sqrt{s_{NN}} =$ 2.42 GeV

 Energy, system size and centrality dependence of the hot and dense medium probed by dileptons

Momentum-dependent dilepton spectra

Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV 0-40% centrality

- Possibility for multi-differential analysis
- ω meson clearly visible at high momentum
- "Disappears" at lower momentum:
 - Overwhelmed by the ρ contribution?
 - Broadened by medium effects?
 - Dedicated theory calculations needed to study the effect

Hard Probes 2023 | Szymon Harabasz

System size dependence of dilepton production

Au+Au & Ag+Ag $\sqrt{s_{NN}}$ = 2.42 GeV Various centralities

Dilepton polarization

• Angular distribution of l^+l^- in γ^* rest frame depends on the polarization of γ^* :

 $\frac{dN}{d^4 x d^4 q d\Omega} = \frac{\mathcal{N}(1 + \lambda_\theta \cos^2 \theta)}{+ \lambda_\phi \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi}$ $+ \lambda_\phi^{\perp} \sin^2 \theta \sin 2\varphi + \lambda_{\theta\varphi}^{\perp} \sin 2\theta \sin \varphi$

- Distinct polarization patterns for different γ^* sources
- For thermal dileptons: $\lambda_{\theta} = \frac{\Pi_T \Pi_L}{\Pi_T + \Pi_L}$, all other coefficients are zero

27.03.2023

• Angular distribution of l^+l^- in γ^* rest frame depends on the polarization of γ^* :

 $\frac{dN}{d^4 x d^4 q d\Omega} = \frac{\mathcal{N}(1 + \lambda_\theta \cos^2 \theta)}{+\lambda_\phi \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi} + \lambda_\phi^{\perp} \sin^2 \theta \sin 2\varphi + \lambda_{\theta\varphi}^{\perp} \sin 2\theta \sin \varphi}$

- Distinct polarization patterns for different γ^* sources

Dilepton polarization

17

Dilepton polarization

 Angular distribution of l⁺l⁻ in γ^{*} rest frame depends on the polarization of γ^{*}:

 $\frac{dN}{d^4 x d^4 q d\Omega} = \frac{\mathcal{N}(1 + \lambda_\theta \cos^2 \theta)}{+\lambda_\phi \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi}$ $+ \lambda_\phi^{\perp} \sin^2 \theta \sin 2\varphi + \lambda_{\theta\varphi}^{\perp} \sin 2\theta \sin \varphi$

- Distinct polarization patterns for different γ^* sources
- For thermal dileptons: $\lambda_{\theta} = \frac{\Pi_T \Pi_L}{\Pi_T + \Pi_L}$, all other coefficients are zero
- Reasonable statistics for lower energy data (10% of all)
- Ongoing study of acceptance corrections
- Flip of the polarization already visible?

Ag+Ag $\sqrt{s_{NN}}$ = 2.42 GeV

Dilepton polarization

• Angular distribution of l^+l^- in γ^* rest frame depends on the polarization of γ^* :

 $\frac{dN}{d^4 x d^4 q d\Omega} = \frac{\mathcal{N}(1 + \lambda_\theta \cos^2 \theta)}{+\lambda_\phi \sin^2 \theta \cos 2\varphi + \lambda_{\theta \varphi} \sin 2\theta \cos \varphi} + \lambda_\phi^{\perp} \sin^2 \theta \sin 2\varphi + \lambda_{\theta \varphi}^{\perp} \sin 2\theta \sin \varphi}$

- Distinct polarization patterns for different γ^* sources
- For thermal dileptons: $\lambda_{\theta} = \frac{\Pi_T \Pi_L}{\Pi_T + \Pi_L}$, all other coefficients are zero
- Reasonable statistics for lower energy data (10% of all) Ag+Ag $\sqrt{s_{NN}} = 2.42 \text{ GeV}$ HADES work in progress Ongoing study of acceptance corrections 1.2 0-40% centrality $0.45 < M_{ee} (\text{GeV}/c^2) < 0.60$ Flip of the polarization already visible? Inside HADES acceptance $\lambda @ T=80.0 MeV \& \rho_{off}=1.5\rho_0$ 0.8 -0.8 -0.4 -0.2 -0 --0.2 -0.2 -0.4 0.6 0.4 0.2 0.8-Predictions: N. Schwarz. Bachelor's thesis. 0.6-Technical University Darmstadt (2023) 04 -0.5 0.5 n 0.2 $\cos(\theta_{\gamma-e})$ 2.5 2 1.5 -0.2--0.4 17 0.2 0.4 0.6 0.8 1.2 14 M (GeV/c²)

Dilepton azimuthal anisotropy

Au+Au $\sqrt{s_{NN}}$ = 2.42 GeV Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV 0-40% centrality

18

- Consistent with charged pion results
- At higher mass v₂ consistent with 0
 - Confirms dileptons as penetrating probes of hot and dense medium

Niklas Schild, talk, 30 Mar 2023, 10:20

Baryons asextended objectspp √s = 2.42 GeVπ p √s = 1.49 GeV

- Ratios to the case with the point-like form factor ("QED")
- Rising with the dilepton invariant mass
- Vector Meson Dominance:
 - VMD2 has $\Gamma = \Gamma_0 \left(\frac{M_0}{M_{ee}}\right)^2$ and overshoots the data at low M_{ee}
 - VMD1 has $\Gamma = \Gamma_0 \frac{M_{ee}}{M_0}$ and leaves room for a contribution of direct $N \gamma^*$ coupling
 - Therefore the "strict VMD" is excluded

Data: arXiv:2205.15914 [nucl-ex] Zétényi: PRC **104**, 015201 (2021) Ramalho: PRD **95**, 014003 (2017), PRD **101**, 114008 (2020)

New Feb 2022 data

p+p \sqrt{s} = 3.46 GeV

Dilepton perspectives: extracting electrical conductivity

Summary

- Electromagnetic probes allow studying the hot and dense medium
- They measure the temperature and lifetime of the fireball
- Structures in the excitation function will signify a phase transition
- HADES provides high-precision data on dilepton multi-differential spectra and flow harmonics with collision energy, system size, and centrality dependence
- Further studies:
 - Dilepton polarization
 - Electrical conductivity of the medium