PHENIX overview

QGP – the fine print or: is yesterday's calibration today's discovery?

Gabor David, SBU/BNL

PHENIX – still many things to explore

Stopped data taking in 2016

Some key ongoing or recently finished analyses:

c and b nuclear modification, flow J/Ψ , $\Psi(2S)$ nuclear modification and flow high p_T direct photons in small systems direct photons in large systems, including flow (archival, large dataset) low p_T direct photons in small systems direct photon – hadron correlations

p+p → some first-ever results, reference x+A → *small systems, currently maybe the most exciting* A+A → "archival" papers based on the largest datasets, "photon puzzle"

Starting to read the "finer print" in heavy ion collisions

Data and Analysis Preservation – and we mean it!

Heavy ion collisions: the fine(r) print

Small systems: from "reference" to centerstage?

\bigcirc

From...

... to ...

Nature Physics 15, (2019) 214-220

Small systems anisotropies cross-check

Nature Physics 2019: found significant v_2 , v_3 in small systems Evidence for QGP droplets even is small system collisions

PRC 105, 024901 (2022)

Re-analyzing the data using 2-particle correlations and different combinations of 3 subdetectors \rightarrow earlier results confirmed Differences for different subdetector-combinations, but clean signal for all of them (η -dependence of v₂?)

Nature Physics result confirmed Other signs of QGP?

Direct photon cross sections, A_{LL}, p+p 510 GeV

Isolated

PHENIX Data

25

30

arXiv: 2202.08159

Double helicity asymmetry isolated direct photons

Inclusive

p+k

MPI? Parton showers?

Still missing something at low p_T ?

20

Jet substructure in p+p

Z_g is consistent with published STAR result (PLB 811 (2020) 135846)

р+р

Baseline for ongoing analysis in p+Au

For details and more jet results including d+Au: Julia Velkovska, March 29, 17:10

8 Hard Probes 2023, G. David SBU/BNL

 \bigcirc

All quiet on the p+p front (?)

First measurement of forward η production in 500 GeV p+p Cross section agrees with NLO pQCD

 $J/\Psi / \langle J/\Psi \rangle$ vs N_{ch} / $\langle N_{ch} \rangle$

Important: where is N_{ch} measured? are J/ Ψ tracks counted in N_{ch} ?

Event characterization – ambiguities even in Au+Au (?)

Central arm v_2 as a function of forward multiplicity and zero degree activity

Same multiplicity class (FVTX), different ZDC energy class \rightarrow different N_{part}, event geometry

Charged hadron S_{loss} vs reaction plane in A+B

$$S_{\text{loss}} \equiv \delta p_T / p_T = \frac{p_T^{pp} - p_T^{AA}}{p_T^{pp}}$$

♦-differential (in-plane, out-of-plane)

Different values and evolution with L in-plane and out-of-plane

For details: Maya Shimomura, Tue March 28, 16:50

π^0 flow in Cu+Au vs Au+Au

 v_2 scales with eccentricity * system size (ϵ_2 * $(N_{part})^{1/3}$) even at high p_T , where this is not hydro...

Heavy flavor R_{AA} (charm vs bottom) vs N_{part}

arXiv:2203.17058

Suppression pattern very different at intermediate $\ensuremath{\textbf{p}_{T}}$

For details: Maya Shimomura, Tue March 28, 16:50

Heavy flavor flow

Charm follows the charged hadron trend (but smaller)

For details: Brandon Blankenship, Tue, March 28, 14:40

Non-prompt direct photons in Au+Au

Increasing T_{eff} with p_T . Pre-equilibrium contributions?

Pre-equilibrium photons?

For details and more "thermal" photons: Roli Esha, March 28, 17:10 Hard Pl

Universal scaling of direct photon yields

In large systems low p_T photon yields scale with $dN_{ch}/d\eta$ over a large range of collision energies

arXiv:2203.17187

39 - 2760 GeV, all centralities Same scaling power α both for 1-5 GeV/c range and for smaller p_T intervals

> For details and more "thermal" photons: Roli Esha, March 28, 17:10

Universal α but too small for QGP / HG Pre-equilibrium production?

Mid-rapidity π^0 and η transverse single spin asymmetry in p+p, p+A (

p+p

Consistent with zero for all p_T across species and colliding systems. No nuclear modification of the TSSA observed.

TSSA unchanged in p+A

Charged hadron forward/backward TSSA in p+p, p+A

Positive and negative, three colliding systems

arXiv: 2303.07191

Negative

Positive

Independent of A within uncertainties (measured range is above Q_s)

All consistent with zero except for h^+ and $X_F > 0$

ϕ and $\pi^0~R_{xA}$ in small systems

PRC 106, 014908 (2022)

Quark coalescence? \rightarrow consistent QGP, but too short lifetime?

Strangeness enhancement? \rightarrow inconclusive

J/ Ψ and Ψ (2S) production in p+Au

PRC 105, 064912 (2022)

 $\Psi(2S)$ more suppressed than J/ Ψ in the Au direction –

similar to ALICE, LHCb.

Consistent with models (Du, Rapp) that include hot nuclear matter effects.

Final state effects at RHIC and LHC similar???

Final state effects in p+A?

High pT π^0 in small systems (R_{xA})

PRC 105, 064902 (2022)

_p+p

p+Al

d+Au

³He**+**A

The p+p reference is a combined result from 2005, 2008 and 2015 data

Ordering and some p_T shift of the Cronin peak (but reverse as nPDF would predict)

Same suppression at high p_T in centrals

Some enhancement in peripherals

Ordering with system size NOT seen at high p_T

Potential bias in centrality determination? Final state effect?

High and low p_T : quite different physics!

Bias in N_{coll} at high p_T ?

For details: Axel Drees, Tue March 28, 16:30

Experimental measure of N_{coll}

Centrality (b, theory) – event activity (experiment) \rightarrow mapping is ambiguous in small systems

DAP – Data and Analysis Preservation

REANA

New (public) PHENIX homepage:

https://www.phenix.bnl.gov/

HEPData:

data tables for 75+ published papers

Zenodo:

>600 documents, including all PHENIX theses and talks since 2016

OPENData:

hands-on introduction to photon and π^0 analysis

REANA: 2016 d+Au data π^{0} MB spectrum reconstructed by a non-PHENIX person (22/03/2023)

REANA

High p_T direct photon and π^0 analysis chain implemented

PHENIX: lively analysis program

Zeroing in on the "fine print", soft-hard QCD transition

Small systems: from "reference" to the most exciting physics

Neutral probes, heavy flavor

Archival papers

Many more interesting things to come!

Making PHENIX data re-analyzable decades from now – and we mean it!

