

CMS experimental highlights

<u>Georgios K Krintiras</u> (on behalf of the CMS Collaboration) The University of Kansas

11th International Conference on Hard and Electromagnetic Probes

Outline-the probes

Early dynamics and nPDFs • E/W bosons J/ψ, dijets, vn (UPC) Heavy quarks and quarkonia • ψ(2S), D⁰, Λ⁺_c ○ $b(\rightarrow D^0)$, B_s^0 , B_c^+ , Y(ns) Medium modifications dijet & b jet shapes 0 dijet vn Ο **Rare/BSM probes** • X(3872), tops, **T** leptons

Run 3 & beyond

Early time dynamics and nPDFs

<u>JHEP 05 (2021) 182</u> PRL 128 (2022) 122301

• Forward-backward ratios $R_{FB} \equiv 1$ in the absence of nuclear effects

- HG-PYTHIA grasps centrality evolution → centrality bias in peripheral PbPb
- <u>W bosons</u>, <u>dijets</u>, <u>top quarks</u> sensitive to gluons at different x

FINA

Coherent J/ ψ production in UPC PbPb HI

HIN-22-002 (to appear)

W. Li: Wed 11.10 am

Using ZDCs, disentangled low- and high-γ energy contributions

- experimental uncertainty correlated across or W_{VN}
 - flattening of coherent $\sigma(J/\psi)$ vs. W_{vN}^{Pb} not predicted by models

An unprecedentedly low-x gluon regime is probed (10⁻⁴-10⁻⁵)

• LHC data seem to consistently point to a common *x* evolution

NEW RESULT

FINAL

Angular correlations in excl. dijet and yp events

<cos(2Φ)> for exclusive dijets not well described by MC tuned in ep

- sensitive to primordial asymmetry due to the linearly polarized gluons
- Bridging large with exceedingly small systems
 - PYTHIA8 describes v_2 in γp too \rightarrow jet-like correlations still dominate

Heavy quarks and quarkonia

Heavy flavor flow in high-multiplicity **pPb**

CMS-PAS-HIN-21-001

K. Lee: Tue 11.30 am

- First v₂ measurement for Y(1S)
 - $v_2 \approx 0$ up to 30 GeV(!), similar to <u>a model</u> with final-state interactions only

• Bridging HF flow measurements in large & small systems

- clear mass hierarchy: heavier particles flow less
- open question: do open/closed b hadrons flow in pPb?

NEW RESULT

- HF en. loss measurement with Λ_c^+ R_{AA}
 - Large suppression but with min R_{AA} at \approx 14 GeV contrary to other HF measurements 10

Charm guark hadronization in pr and PhPh CMS-PAS-HIN-21-004

Y. Zhang: Tue 5.30 pm

S. Chandra, M. Stojanovic: Poster

PYTHIA8+CR describes Λ_{r}^{+}/D^{0} at $p_{\tau} < 10$ GeV in pp, similar to models

containing decays of excited c baryons; involving coalescence and fragmentation

Extending the p_{T} (<40 GeV) and centrality (0–90%) reach in PbPb

 $\Lambda_{2}^{\dagger}/D^{0}$ in pp and PbPb consistent \rightarrow no significant contribution from coalescence 0

NEW RESULT

Charm quark hadronization in pPb and PbPb

CMS-PAS-HIN-21-016 CMS-PAS-HIN-21-004 NEW RESULT

Y. Zhang: Tue 5.30 pm

S. Chandra, M. Stojanovic: Poster

• First measurement of Λ_c^+/D^0 vs N_{trk}

• different trend compared to strange sector, i.e., small dependence

Extending the system (pPb 8 TeV), p_τ (<40 GeV), and centrality (0–90%)

- \circ Λ_{c}^{+}/D^{0} in pPb and MB PbPb consistent at intermediate p_{T}
- at high p_T MB and central PbPb approach the ratio from $e^+e^- \rightarrow$ no coalescence

Beauty hadronization in

PLB 829 (2022) 137062 PRL 128 (2022) 252301

Tzu-An Sheng: Thu 10.20 am

Observation of B⁰_s

- indication of enhanced B_s^0/B^+ in PbPb to **pp** at low p_T
- similar to models with recombination or coalescence

Observation of B⁺_c

• flavor-dependent R_{AA} at low/medium p_T : recombination of c and b

• Observation of Y(3S) now in PbPb too(!)

- indication of ordered (sequential) suppression up to Y(3S) in both systems
- \circ strong challenge for models to reproduce Y(3S) R_{AA}>0

• Excited states set strong constraints on models

 \circ $\:$ In the study of initial-/final-state effects

Medium modifications

How energy loss is distributed?

L. Kalipoliti: Wed 12.10 pm

<u>JHEP 05 (2021) 116</u> <u>arXiv:2210.08547</u> (accepted by PLB)

Jet shape: radial profile of particles in dijets, b jets

- in-medium path length for leading jets is larger when $x_1 \approx 1$ (vice versa for subleading)
- for b jets
 - small-∆r depletion: sensitive to dead-cone effect
 - Iarge-Δr enhancement: enhanced medium response to b quarks

Dijet vn in PbPb

arXiv:2210.08325 (accepted by JHEP)

• Path-length dependent energy loss & its fluctuations

- dijet $v_2 > 0$ with expected centrality dependence; consistent with high- p_{T} hadron v_2
- dijet $v_{3'}, v_4 \approx 0 \rightarrow \text{not yet}(?)$ sensitive to initial-state/en. loss fluctuations

NEW RESULT

FINAL

Rare/BSM probes

Exotic hadrons and top guarks in

PRL 128 (2022) 032001 PRL 125 (2020) 222001

Evidence of X(3872) production

- its quark configuration remains elusive Ο
- $X(3872)/\psi(2S)$: non-monotonic N_{trk} trend in pp & more pronounced in larger systems? Ο
- **Evidence of top quark pair production**
 - uncertainty at HL-LHC competes with nPDF uncertainty; tool for QGP time profile Ο

b

т lepton pair production in UPC PbPb

arXiv:2206.05192 (accepted by PRL, editor's suggestion)

- Observation of $\gamma\gamma \rightarrow T^{+}T^{-}$ at LHC
 - obtained only with a single, clean final state
- Model-dependent constraints on a₁ obtained
 - \circ further improvements on projected **a**₁ at HL-LHC with more final states

Prospects for Run 3 & beyond

Improvements expected already in Run 3, e.g.,

- online: increased MB trigger efficiency in peripheral events with ZDC inclusion
- \circ offline: better low-p_T tracking thanks to innermost pixel layer consideration

• Overall CMS will record 25 kHz of MB PbPb events

representing an increase of 80x to 2015 and 3x to 2018

CMS Phase 2 Upgrades (HI related)

CMS-DP-2021-037

Yen-Jie Lee: Tue 2.00 pm

Phase 2 Upgrade

CMS Phase 2 for Run 4

- Tracker |n|<4
- Muon ID up to |η|<2.8
- High Granularity Calorimeter
- MIP timing detector
 - 4D vertexing
 - p/K/π PID (CMS MTD)
- L1 trigger update: 750 kHz for CMS
- DAQ: 51 GB/s for CMS
- L1 track triggers
- ZDC

- Main batch of CMS Upgrades in Run 4
 - Among others, unique hermetic particle identification coverage by CMS MTD

Physics requests documented in past years over a diverse set of reports

• WG5 HL-LHC, ATLAS+CMS Snowmass'22, QCD Town Meeting WP, CMS HIN

Summary-the physics

53:31.890368 GMT

Early dynamics and nPDFs

- E/W bosons, dijets, top quarks sensitive to nPDFs at different (x,Q²)
- very low-x gluon regime probed by J/ψ in UPC PbPb
- \circ theo. dev. needed to extract gluon polarization from excl. dijets
- Heavy quarks and quarkonia
 - indication of $\psi(2S) v_2 > prompt J/\psi v_2; v_2{4}/v_2{2} for D⁰$
 - extending the system (pPb 8 TeV), p_T , and centrality reach for Λ_T^+
 - evidence for b (\rightarrow D⁰) v₃ >0; Y's v₂ \approx 0 in both pPb and PbPb
 - observation of B_s^0 , B_c^+ , and $R_{AA}!=0$ for Y(3S)
- Medium modifications
 - \circ jet shapes with dijets and b jets input for a more precise energy loss
 - path-length dependent energy loss & its fluctuations with dijet vn
- Rare/BSM probes
 - evidence for the X(3872) exotic meson and top quark in PbPb
 - \sim **T** leptons as a portal to BSM physics-probing a_r
- Improved Run 3 & excellent prospects in Run 4

CMS FINAL HP23 HP23	Jets and their modification	Heavy flavor and quarkonia	Early-Time Dynamics & nPDFs	Future Facilities
Tue, 11.30 am		<u>K. Lee: Υ(1S), J/ψ</u> <u>v, in pPb</u>		
Tue, 11.50 am		<u></u> <u>G. Oh: J/ψ, ψ(2S)</u> v <u>, in PbPb</u>		
Tue <i>,</i> 2.00 pm				Y-J Lee: Phase II Opportunities
Tue, 3.40 pm		<u>J. Park: Y(nS) R_{pA,AA} in pPb, PbPb</u>		opportunities
Tue, 5.30 pm		Y. Zhang: ∕, in pPb		
Wed, 11.10 am			W. Li: J/ ψ in UPC $ ightarrow$	
Wed, 12.10 pm	<u>L. Kalipoliti: b jet</u> <u>shapes in PbPb</u>			
Wed, 2.00 pm		<u>M. Stojanovic:</u> D ⁰ in PbPb		S. Chandra, M
Wed, 3.20 pm			<u>S. Behera: _{vn}in yp</u>	PD. PbPb
Thu, 10.20 am		<u>Tzu-An Sheng:</u> B ^o s and B ⁺ c <u>in PbPb</u>	"	

Prompt D^o - \overline{D}^{o} production and v, fluctuations

PbPb 0.58 nb⁻¹ (5.02 TeV)

CMS-PAS-HIN-21-010

Fluctuations

x 0.5

Skewness = 0

p(x)

Negative skewness

0.02 **CMS**

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

 $\overline{\mathbf{h}}$

 ΔV_2

Prompt $D^0 - \overline{D}^0$

- Average value

0.5

+ 20-70%, 2.0 < p_{τ} < 8.0 GeV/*c*

 $\Delta v_2^{\text{Avg}} = 0.001 \pm 0.001 \text{ (stat)} \pm 0.003 \text{ (syst)}$

|y|

First y-dependent Δv_2 measurement for D⁰

15

- searching for strong initial Coulomb field Ο
- Fine splitting up to v_{2} {10}(!)
 - higher order moments (γ_{1-3}) in initial state revealed Ο

$Z/\gamma^* \& W$ production in pPb

<u>JHEP 05 (2021) 182</u> PLB 800 (2020) 135048

• First Z/γ^* study in an extended m_{uu} range

- low m_{uu} sensitive to NNLO corrections
- on-shell production less well described: statistical fluctuations(?)

• Observation of nuclear effects in W boson production

• included in all recent nPDF fits

FINAL

Key characteristics of the nPDF global fits

	KSASG20	nCTEQ15WZSIH	TUJU21	EPPS21	nNNPDF3.0
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO
IA NC DIS	\checkmark	✓	✓	~	✓
$\nu A CC DIS$	\checkmark		\checkmark	\checkmark	~
pA DY	\checkmark	\checkmark		\checkmark	\checkmark
$\pi A DY$				\checkmark	
RHIC dAu π^0, π^{\pm}		\checkmark		✓	
LHC pPb $\pi^0, \pi^{\pm}, K^{\pm}$		\checkmark			
LHC pPb dijets				✓	\checkmark
LHC pPb D ⁰				✓	√ reweight
LHC pPb W,Z		\checkmark	\checkmark	\checkmark	\checkmark
LHC pPb γ					\checkmark
Q, W cut in DIS	1.3, 0.0 GeV	2.0, 3.5 GeV	1.87, 3.5 GeV	1.3, 1.8 GeV	1.87, 3.5 GeV
p_{T} cut in D ⁰ , <i>h</i> -prod.	N/A	3.0 GeV	N/A	3.0 GeV	0.0 GeV
Data points	4353	<mark>94</mark> 8	2410	2077	2188
Free parameters	9	19	16	24	256
Error analysis	Hessian	Hessian	Hessian	Hessian	Monte Carlo
Free-proton PDFs	CT18	~CTEQ6M	own fit	CT18A	~NNPDF4.0
Free-proton corr.	no	no	no	yes	yes
HQ treatment	FONLL	S-ACOT	FONLL	S-ACOT	FONLL
Indep. flavours	3	5	4	6	6
Reference	PRD 104, 034010	PRD 104, 094005	arXiv:2112.11904	arXiv:2112.12462	arXiv:2201.12363

P. Paakkinen (DIS22)

How to unambiguously access low-x gluons? The theo. solution

Guzey et al., EPJC 74 (2014) 2942

Entering a new regime of small $x \sim 10^{-4}$ -10⁻⁵ in nuclei w/o the need to increase the energy!

HF transport models: ingredients

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	\checkmark	×	\checkmark	\checkmark	\checkmark
LIDO	\checkmark	\checkmark	\checkmark	\checkmark	
PHSD		×	\checkmark	\checkmark	
DAB-MOD	\checkmark	\checkmark	\checkmark	\checkmark	×
Catania	\checkmark	×		\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LBT	\checkmark		\checkmark	\checkmark	\checkmark
POWLANG+HTL	\checkmark	×	\checkmark	\checkmark	
LGR	\checkmark	$\overline{\checkmark}$	\checkmark	\checkmark	

But more importantly: different implementations and input parameters.

Larger jet R → wider area to recover lost energy

- but **R-independent** suppression seen
- Cross experiment effort

Different jet
 collections and UE
 treatment

