

Characterising the hot and dense fireball via virtual photons in HADES

Niklas Schild for the HADES Collaboration

This work is supported by the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006)

Motivation

Electromagnetic probes (γ, γ^*) penetrate strongly-interacting medium and can bring direct information to the detector

Allows many unique measurements

Transport properties

Degrees of freedom Restoration of chiral symmetry of the medium

Lifetime/Temperature/Acceleration/ Polarization of the fireball

Yet brings own set of challenges

Need to isolate contribution of interest

Rarity of events (BR $\sim 10^{-5})$

Motivation

Electromagnetic probes (γ, γ^*) penetrate strongly-interacting medium and can bring direct information to the detector

Allows many unique measurements

Transport properties

Degrees of freedom of the medium

Restoration of chiral symmetry

Lifetime/Temperature/Acceleration/ Polarization of the fireball

Yet brings own set of challenges

Need to isolate contribution of interest

Rarity of events (BR ~ $10^{-5})$

Motivation

Electromagnetic probes (γ, γ^*) penetrate strongly-interacting medium and can bring direct information to the detector

Allows many unique measurements

Transport properties

Degrees of freedom of the medium

time (Temperature (Acceleration (

Restoration of chiral symmetry

Lifetime/Temperature/Acceleration/ Polarization of the fireball

Yet brings own set of challenges

Need to isolate contribution of interest

Rarity of events (BR $\sim 10^{-5})$

The HADES

Invariant mass spectrum

The High-Acceptance-Di-Electron-Spectrometer

The HADES – Probing the QCD phase diagram

Different collision dynamics compared to higher energies

Pion and nucleon beams

Reference measurements
Inclusive and exclusive measurements

Explore region of QCD phase diagram with high net-baryon density and moderate temperatures

The HADES – Performance e^{\pm} identification

The HADES – Performance e^{\pm} identification

RICH Start

Target [·]

Veto

Beam

 $p_{\rm e} \,({\rm MeV}/c)$ 30.03.2023 | 11th International Conference on Hard and Electromagnetic Probes | Niklas Schild | 8

 $p \times q (\text{MeV}/c)$

The HADES – Performance e^{\pm} identification

Reconstruction of the invariant mass spectrum

Invariant mass spectrum

Measured mass spectrum serves as integral over whole evolution

Invariant mass spectrum

Initial NN contribution

- Reference measured for $\sqrt{s_{NN}} = 2.42 \text{ GeV}$
- For $\sqrt{s_{NN}} = 2.55$ GeV currently estimated using GiBUU 2021 release

Measured mass spectrum serves as integral over whole evolution

Freeze-out cocktail

- Simulated using Pluto event generator
- Multiplicities to be measured from same dataset

Invariant mass spectrum

Initial NN contribution

- Reference measured for $\sqrt{s_{NN}} = 2.42 \text{ GeV}$
- For $\sqrt{s_{NN}} = 2.55$ GeV currently estimated using GiBUU 2021 release

Measured mass spectrum serves as integral over whole evolution

Freeze-out cocktail

- Simulated using Pluto event generator
- Multiplicities to be measured from same dataset

Temperature determination

- Subtraction of freeze-out and initial contributions reveals excess of thermal nature
- Higher temperature for higher collision energy

Differential analysis of dielectron spectra

- Sufficient number of lepton pairs and high purity allows for multidifferential analysis, e.g.:
 - Centrality-dependent*
 - > Angular distributions
 - Reconstruction of p_t and y spectra for varying mass bins

Analysis in bins of tranverse momentum p_t

- ω -peak clearly visible at high p_t
- Disapperance of ω -peak at small p_t
- Model comparison ongoing

Flow analysis

Investigating collectivitiy

Collectivity Observables

Polarization

Anisotropic flow

Investigating collectivitiy

Collectivity Observables

Investigating collectivitiy

Collectivity Observables

Polarization

Radial (isotropic) flow

Anisotropic flow

 $\frac{dN}{d\Delta\varphi} \propto 1 + 2 \sum v_n \cos(n\,\Delta\varphi)$

 $\Delta \varphi = \varphi_{ee} - \Psi_{RP}$

Flow analysis procedure

- Event Plane Ψ_{EP} reconstructed from total tranverse momentum in forward wall detector [1]
- Event plane resolution \Re_n via Ollitrault method [2]

30.03.2023 | 11th International Conference on Hard and Electromagnetic Probes | Niklas Schild | 19

[1] Andreeva *et al.*, 2014 Inst. and Exp. Techniques 57 103–19 [2] Jean-Yves Ollitrault, arXiv:nucl-ex/9711003

Directed Flow v_1

Rapidity dependence

- Focus on mass region beyond π^0 mass \longleftrightarrow Otherwise π_0 signal dominant
- Point symmetry around v_1 at midrapidity within uncertainties

Transverse momentum dependence

\implies Larger v_1 found at higher p_t

Elliptic Flow v_2

Elliptic flow

- Low masses dominated by π^0 Dalitz decay
 - \implies Negative v_2 consistent with pions
- Beyond π^0 mass v_2 consistently around zero for $120 < M_{ee}$ (GeV/ c^2) < 900

Multidifferential elliptic flow

 v_2 consistently around zero for $120 < M_{ee} (GeV/c^2) < 900$

Would agree with picture of dileptons as penetrating probes

Prospects

Isolate in-medium dilepton contribution

Ongoing analyses to find v_n and multiplicities of freeze-out hadrons

Analysis of p+p collisions at $\sqrt{s_{NN}} = 2.55$ GeV (taken Feb2022) will provide NN reference

Determine radial flow

Reconstruction of dilepton p_t spectra as a function of invariant mass

Determine polarization of virtual photons

First strides are taken in data analysis and preparation of theory predictions

Estimation of virtual photon polarization from spectral functions (N. Schwarz)

Summary

Dilepton spectra are reconstructed for centerof-mass energies of 2.42 GeV and 2.55 GeV

Study of numerous fireball characteristics (e.g. temperature)

2

Collectivity is under investigation

Reconstruction of elliptic flow for thermal dileptons shows difference in v_2 from hadron measurements

p, (MeV/*c*)

 $y - y_{\rm CM}$