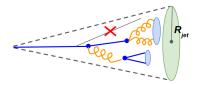
Systematic exploration of multi-scale jet substructure in p+p collisions at $\sqrt{s} = 200$ GeV by the STAR experiment

Monika Robotková for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences Czech Technical University in Prague


Hard Probes 2023, Aschaffenburg, Germany 26 - 31 March, 2023

Jet substructure and SoftDrop

- Study of jet substructure can help understand partonic fragmentation and hadronization processes
- Our goal is to access parton showers through experimental observables
- Grooming technique called SoftDrop used to remove soft wide-angle radiation from the jet in order to mitigate non-perturbative effects
- Connects parton shower and angular tree

$$\frac{\min(\textit{p}_{\mathsf{T},1},\textit{p}_{\mathsf{T},2})}{\textit{p}_{\mathsf{T},1}+\textit{p}_{\mathsf{T},2}} > z_{\mathsf{cut}}\theta^{\beta},$$

where $\theta = \frac{\Delta R_{12}}{R_{int}}$

 $p_{T,1}, p_{T,2}$ - transverse momenta of the subjets z_{cut} - threshold (0.1) β - angular exponent (0) ΔR_{12} - distance of subjets

in the rapidity-azimuth plane

STAR

• Iterative SoftDrop used to study first, second, and third splits

Momentum and angular observables

Zg	shared momentum fraction	$Z_{\rm g} \equiv \frac{\min(p_{{\rm T},1},p_{{\rm T},2})}{p_{{\rm T},1}+p_{{\rm T},2}}$
$R_{\rm g}$	groomed radius	first ΔR_{12} that satisfies SoftDrop
		condition
k _T	splitting scale	$k_{\rm T} = z_{\rm g} p_{\rm T,jet} \sin R_{\rm g}$

Mass observables

M	jet mass	$M = \sum_{i \in ext{jet}} p_i = \sqrt{E^2 - ec{p} ^2}$
$M_{\rm g}$	groomed jet mass	jet mass after grooming
μ	groomed mass fraction	$\mu \equiv \frac{\max(m_{\rm j,1},m_{\rm j,2})}{M_{\rm g}}$

3/28


STAR experiment

TPC - Time Projection Chamber

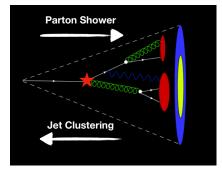
- Detection of charged particles for jet reconstruction
- Transverse momenta of tracks: $0.2 < p_T < 30 \text{ GeV}/c$

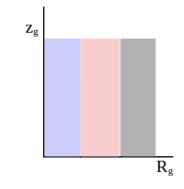
BEMC - Barrel Electromagnetic Calorimeter

- Detection of neutral particles for jet reconstruction
- Granularity $(\Delta\eta \times \Delta\phi) = (0.05 \times 0.05)$
- Tower requirements: $0.2 < E_{\rm T} < 30 {\rm ~GeV}$

Full azimuthal angle, $|\eta|~<~1$

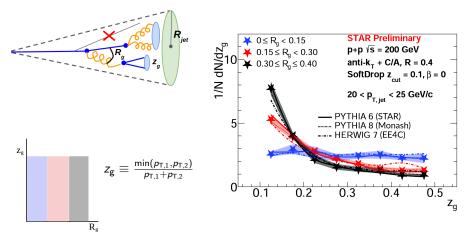
Dataset: p+p, $\sqrt{s} = 200$ GeV, 2012 **Algorithms:** anti- k_T , Cambridge/Aachen **Jets:** Full jets, $20 < p_{T,iet} < 50$ GeV/c


- Measurement is affected by finite efficiency and resolution of the instrumentation
- Our goal is to deconvolve detector effects and obtain true distribution from measured one
- (2+1)D unfolding (D'Agostini. arXiv:1010.0632(2010))
 - 2D unfolding via Iterative Bayesian unfolding
 - Correction on ensemble level for the 3rd dimension

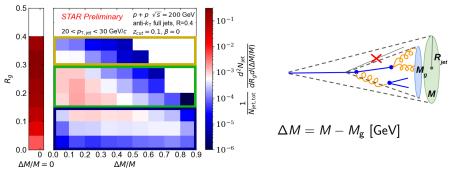

MultiFold (Andreassen et al. PRL 124, 182001 (2020))

- Machine learning method
- New tool at RHIC
- All observables are simultaneously unfolded in an unbinned way

Correlation between substructure observables at the first split

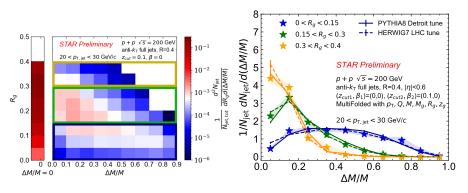


6/28


$z_{\rm g}$ vs. $R_{\rm g}$ at the first split

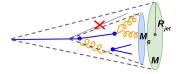
- When we move from collinear hard splitting to softer wide angle splitting, z_g distribution becomes **steeper** and more **perturbative**
- MC models describe the trend of the data

 $R_{
m g}$ vs. $\Delta M/M$ at the first split



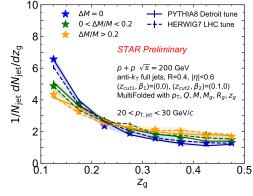
Collinear Drop

- Probes the soft component of the jet
- Difference of an observable with two different SoftDrop settings of parameters ($z_{cut,1}$, β_1) and ($z_{cut,2}$, β_2)
- Our case: $(z_{\text{cut},1}, \beta_1) = (0, 0), (z_{\text{cut},2}, \beta_2) = (0.1, 0)$

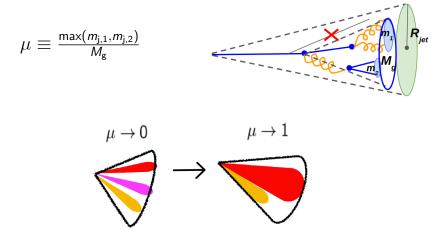

$R_{ m g}$ vs. $\Delta M/M$ at the first split

- The $\Delta M/M$ distribution is **anti-correlated** with $R_{\rm g}$, which is consistent with angular ordering of the parton shower
- Large groomed jet radius \rightarrow little/no soft wide angle radiation (small $\Delta M/M$) in the shower
- MC models describe the trend of the data

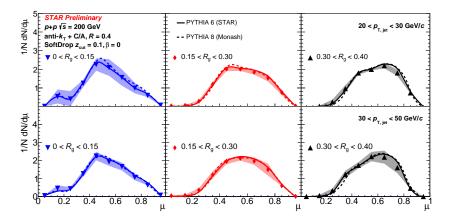
$z_{\rm g}$ vs. $\Delta M/M$ at the first split


 $\Delta M = M - M_{\rm g} \; [{\rm GeV}]$

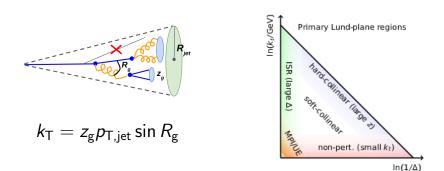
 The more mass that is groomed away relative to the ungroomed mass, the flatter and more non-perturbative the z_g distribution is



10/28

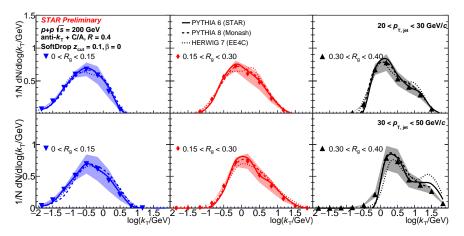

 μ vs. $\mathit{R}_{\rm g}$ at the first split

 $\boldsymbol{\mu}$ allows us to study mass sharing of the hard splitting


μ vs. $R_{\rm g}$ at the first split for two different $p_{\rm T,jet}$ bins

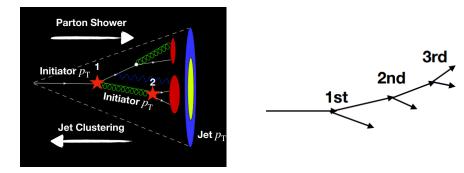
- Dependence on $R_{\rm g}$ much weaker than $\Delta M/M,$ largely independent of $p_{\rm T,jet},$ MC models agree with data
- μ shifts to smaller values at smaller angles, indicating a faster reduction of virtuality in the jet shower

$log(k_T)$ vs. R_g at the first split

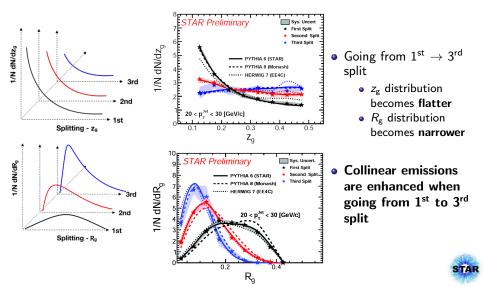


Cutting on $R_{\rm g}$ moves us to different $k_{\rm T} \rightarrow$ we are probing different parts of the Lund Plane

Dreyer, Salam, Soyez, JHEP 12 (2018) 064


$log(k_T)$ vs. R_g at the first split for two different $p_{T,jet}$ bins

- log(k_T) has a strong dependence on R_g and weak dependence on p_{T,jet}, MC models describe the trend of the data
- 0 value corresponds to 1 GeV \rightarrow we move from **non-perturbative** to **perturbative** region


Evolution of the splitting observables as we travel along the jet shower

15 / 28

$z_{\rm g}$ and $R_{\rm g}$ distributions at 1st, 2nd, and 3rd splits

Summary

Correlation at the first split

- New methods for the unfolding were applied (MultiFold, (2+1)D unfolding)
- z_{σ} , $\Delta M/M$, log($k_{\rm T}$) have a **weak** dependence on $p_{\rm T \, iet}$ and a **strong** dependence on R_{σ}
- Study of different Lund Plane regions allows us to observe the correlations between jet substructure observables

Splits along the shower

 Observed significantly harder/symmetric splitting at the third/narrow split compared to the first and second splits

Selecting on the split number along the jet clustering tree results in similar change in $z_{\rm g}$ distributions as selecting on $R_{\rm g}$ or $\Delta M/M$ at the first split

Jet substructure measurements at RHIC energies allow to disentangle perturbative (early, wide splits) and mostly non-perturbative dynamics (late, narrow splits) within jet showers, and test validity of MC models

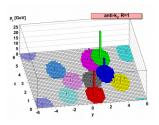
Thank you for your attention!

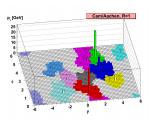
Back up

Jet clustering algorithms

• Jets are defined using algorithms

Anti-k_T algorithm

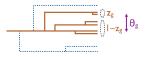

•
$$d_{ij} = \frac{\min(1/p_{T_i}^2, 1/p_{T_j}^2)\Delta R_{ij}^2}{R}$$
, $d_{iB} = 1/p_{T_j}^2$


• Clustering starts from the particles with the highest transverse momentum

Cambridge/Aachen (C/A) algorithm

- $d_{ij} = \Delta R_{ij}^2/R^2$, $d_{iB} = 1$
- Particles are clustered exclusively based on angular separation, ideal to be used to resolve jet sub-structure

 $d_{i\mathrm{B}}$ - distance of the particle *i* from the beam p_{T} - transverse momentum ΔR_{ij} - distance between the particle *i* and *j* R - jet resolution parameter



Cacciari, Salam, Soyez, JHEP 0804:063 (2008)

SoftDrop

- Grooming technique used to remove soft wide-angle radiation from the jet
- Connects parton shower and angular tree
 - Jets are first found using the anti-k_T algorithm
 - Recluster jet constituents using the C/A algorithm
 - Jet j is broken into two sub-jets j₁ and j₂ by undoing the last stage of C/A clustering
 - Jet j is final SoftDrop jet, if sub-jets pass the condition on the right, otherwise the process is repeated

Larkoski, Marzani, Thaler, Tripathee, Xue, Phys. Rev. Lett. 119, 132003 (2017)

• Shared momentum fraction $z_{\rm g}$

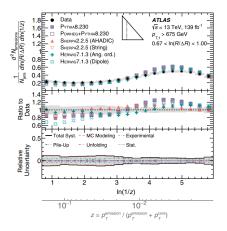
$$z_{\mathrm{g}} = rac{\min(oldsymbol{p}_{\mathrm{T},1},oldsymbol{p}_{\mathrm{T},2})}{oldsymbol{p}_{\mathrm{T},1}+oldsymbol{p}_{\mathrm{T},2}} > z_{\mathrm{cut}} heta^eta,$$

where
$$\theta = \frac{\Delta R_{12}}{R}$$

• Groomed radius $R_{\rm g}$ - first ΔR_{12} that satisfies SoftDrop condition

 $p_{T,1}, p_{T,2}$ - transverse momenta of the subjets z_{cut} - threshold (0.1)

eta - angular exponent (0)


rapidity-azimuth plane

 ΔR_{12} - distance of subjets in the

Lund Plane measurement

- Previous ATLAS measurement uses Lund jet plane
- Significant differences in varying hadronization models at high $p_{T,jet}$ at the LHC \rightarrow we want to study this at lower $p_{T,jet}$, where non-perturbative effects are expected to be larger
- While Lund jet plane integrates over all splits, we focus on the first split

ATLAS, Phys. Rev. Lett. 124, 222002 (2020)

Data analysis

- p + p collisions at $\sqrt{s} = 200$ GeV, 2012
- \circ ${\sim}11$ million events analyzed

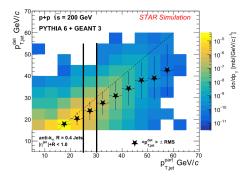
Event and track selection

- Transverse momenta of tracks: 0.2 $<~p_{\rm T}~<$ 30 GeV/c
- Tower requirements: $0.2 < E_T < 30 \text{ GeV}$

Jet reconstruction

- Jets reconstructed with anti- k_T algorithm, reclustered with the C/A algorithm
- Transverse momenta of jets: $15 < p_{\rm T,jet} < 40~{\rm GeV}/c$
- Resolution parameters: R = 0.4, R = 0.6
- SoftDrop parameters: $z_{
 m cut}~=~0.1,~eta~=~0$

$$\frac{\min(p_{\mathsf{T},1}, p_{\mathsf{T},2})}{p_{\mathsf{T},1} + p_{\mathsf{T},2}} > z_{\mathsf{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$


2D Bayesian Unfolding

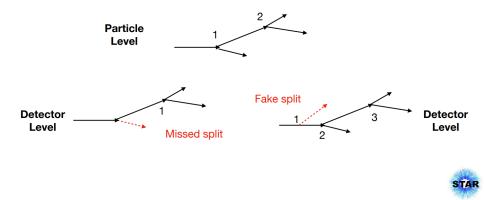
- 2D iterative Bayesian method implemented in the RooUnfold
- Procedure has following steps:
 - Intering the detector and particle level are reconstructed separately
 - 2 Jets are matched based on $\Delta R < 0.6$
 - **③** Jets without match missed jet (particle level) and fake jets (detector level)
 - Response between detector level and particle level for observables is constructed
- We use RooUnfold response which contains Matches and Fakes
 - Unfolding is done separately for $p_{\rm T}^{det}$ intervals 15-20, 20-25, 25-30, 30-40 ${\rm GeV}/c$
- Then unfolded spectra are weighted with values from our projection and put together
- Together with trigger missed and unmatched weighted spectra we get our fully unfolded spectrum

Correction in 2+1D for $z_{\rm g}$, $R_{\rm g}$, and $p_{\rm T,jet}$

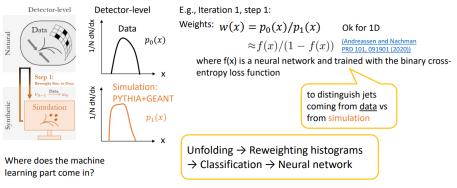
- Results are in 3D $\rightarrow z_g$ vs. R_g is unfolded in 2D and correction for $p_{T,jet}$ in 1D is needed
 - For each particle-level $p_{T,jet}$ bin, we do projection of this bin into detector-level $p_{T,jet}$, and get the weights from detector-level $p_{T,jet}$ bins

STAR, Phys. Lett. B 811 (2020) 135846

- We unfold z_g vs. R_g via iterative Bayesian unfolding in 2D using RooUnfold and unfolded spectra for each detector-level p_{T,jet} bin are weighted and summed
- Additional corrections for trigger and jet finding efficiencies are applied



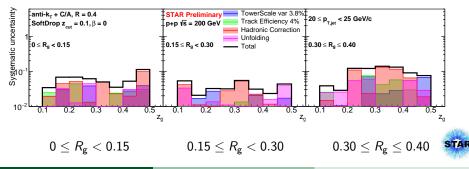
Details on systematic uncertainties available in back up


Monika Robotková

Correction in 2+1D for $p_{\rm T,jet/initiator}$, $z_{\rm g}$, $R_{\rm g}$

- Splits can be affected by detector efficiency and resolution
- Observables at a given split are smeared
- Splitting hierarchy is modified going from particle level to detector level

MultiFold


See backup slides for details of the neural networks.

Systematic uncertainties

• Systematic uncertainties estimated by varying the detector response

- Hadronic correction fraction of track momentum subtracted is varied
- Tower scale variation tower gain is varied by 3.8%
- Tracking efficiency efficiency is varied by 4%
- Unfolding iterative parameter is varied from 4 to 6
- Systematics due to prior shape variation will be included in the final publication

