

Dilepton production and BSM physics from photon fusion processes in UPC and non-UPC Pb+Pb collisions with the ATLAS detector

Iwona Grabowska-Bold (AGH UST, Kraków) for the ATLAS Collaboration

March 28th, 2023

- Ultra-peripheral collisions (UPC) of lead-lead (Pb+Pb) have attracted a lot of attention in the heavy-ion community
 - Very clean environment to study quantum electrodynamics (QED) and photon fluxes within the Equivalent Photon Approximation (EPA) framework
 - ► Z^4 ($\approx 4.5 \times 10^7$) enhancement of cross sections in Pb+Pb wrt proton-proton (pp) collisions
 - Zero Degree Calorimeters (ZDC) offer control over backgrounds and impact-parameter dependence
 - γγ collisions prove to be a competitive tool for searches for beyond Standard Model (BSM) physics
 - ► Non-UPC $\gamma \gamma \rightarrow \mu^+ \mu^-$ events seem to be a **new probe** of the QGP
- ► The following results from 5.02 TeV UPC Pb+Pb collisions from **ATLAS** are discussed:
 - ► Final $\gamma \gamma \rightarrow \mu^+ \mu^-$ [PRC 104 (2021) 024906]
 - ► Final $\gamma\gamma \rightarrow e^+e^-$ [arXiv:2207.12781] accepted for JHEP
 - ► Final $\gamma\gamma \rightarrow \tau^+\tau^-$ [arXiv:2204.13478] accepted for PRL
 - ► Final non-UPC $\gamma \gamma \rightarrow \mu^+ \mu^-$ [arXiv:2206.12594] accepted for PRC

EXCLUSIVE DIMUONS AND DIELECTRONS

EXCLUSIVE DIMUONS: DIFFERENTIAL CROSS SECTIONS

30

20

10

Ю

ATLAS

dơ/dl *γ*_{μμ} [[μb]

0.5

0.5

..., but systematic excess of the data at higher $|y_{\mu\mu}|$

2

0.5

5

0

0.5

Ø

1.5

2

2 2

JNIVERSITY

EXCLUSIVE DILEPTONS: ACTIVITY IN ZDC

EXCLUSIVE DILEPTONS: FORWARD ACTIVITY

- ► Corrected fractions of events in the **0n0n** (dielectrons) and **Xn0n/XnXn** (dimuons) categories as a function of $m_{\ell\ell}$ in three $|y_{\ell\ell}|$ intervals
 - ► f_{0n0n} (f_{Xn0n}/f_{XnXn}) decreases (increases) with $m_{\ell\ell}$ and increases (decrease) with $|y_{\ell\ell}|$
 - Results consistent between dielectron and dimuon channels
 - STARlight qualitatively describes the impact-parameter dependence of the fluxes, but some systematic differences

EXCLUSIVE DIELECTRONS: ONON CROSS SECTIONS

[arXiv:2207.12781]

AGH

> Differential cross sections measured in $m_{ee'}$, $|y_{ee}|$, $\langle p_T^e \rangle$ and $|\cos \theta^*|$ in the **OnOn category**

- STARlight 0n0n provides predictions for neutron production (black dotted line)
- ► SuperChic 3.05 doesn't implement ZDC selections
- ► Use measured 0n0n fractions with uncertainties to correct both STARlight and SuperChic predictions
- \blacktriangleright General conclusions similar to the inclusive ZDC case
 - ► STARlight 2.4 (SuperChic 3.05) systematically lower (higher) than data
 - SuperChic does a better job in the description of shapes

NIVERSI

EXCLUSIVE DILEPTONS: MC DEVELOPMENTS

Recent developments in SuperChic v4.2 bring modeling of ion excitation/de-excitation and emission of neutrons in the forward direction

- ► See L.H. Harland-Lang <u>arXiv:2303.04826</u> for more details
- ► **Good description** of dielectron/dimuon data from ATLAS

EXCLUSIVE DITAUS

► Event candidate for $\gamma \gamma \rightarrow \tau^+ \tau^- \rightarrow e^+ \nu_e \nu_\tau \mu^- \nu_\mu \nu_\tau$

EXCLUSIVE DITAUS: CONTROL PLOTS

> $\gamma \gamma \rightarrow \tau^+ \tau^-$ measured in **three channels**:

- > μ 1T-SR: muon + 1 track (e/ μ /hadron)
- > μ 3T-SR: muon + 3 tracks (3 hadrons)
- > μe -SR: muon + electron
- ► Main backgrounds:
 - ► $\gamma\gamma \rightarrow \mu^+\mu^-(\gamma)$ and photonuclear
 - In general little background contributions in all three SR (15%)

► Good agreement of SM predictions with data

EXCLUSIVE DITAUS: SIGNAL STRENGTH

- ► Signal strength $\mu_{\tau\tau} = N_{\gamma\gamma \to \tau\tau}^{\text{meas}} / N_{\gamma\gamma \to \tau\tau}^{\text{SM,pred}}$ measured using a profilelikelihood fit to the p_{T}^{μ} distribution in the three SRs and 2µ-CR
- ► Result of $\mu_{\tau\tau}$ for each SR assuming a_{τ} anomalous magnetic moment from SM are **compatible with unity**

EXCLUSIVE DITAUS: TAU MAGNETIC MOMENT

Tau anomalous magnetic moment $a_{\tau} = \frac{g-2}{2}$ with a profile-likelihood fit to the p_{T}^{μ} distribution has been extracted

- ▶ HI collisions at the LHC contribute to the hot topic of lepton g 2 measurements
- Templates for different a_τ built by reweighting signal MC using weights from [PLB 809 (2020) <u>135682</u>]
- > Constraints on a_{τ} similar in precision to those observed by DELPHI at LEP
- > Dedicated talk on BSM physics from ATLAS by **Agnieszka Ogrodnik**, Tuesday at 16:50

NON-UPC DIMUONS: CROSS SECTIONS

- ► $\gamma \gamma \rightarrow \mu^+ \mu^-$ studied in non-UPC events
 - Cross section measured as a function of centrality
 - ► STARlight predictions (solid lines) describe the shape but underestimate the normalisation, likely due to the truncation of photon fluxes for $b < R_A$
- ► Centrality-dependent **broadening** of α and k_{\perp} is confirmed
 - Described by QED [PLB 800 (2020) 135089] and PWF [PRD 102 (2020) 094013] calculations
- ► Also the **depletion** of yields at small α and k_{\perp} is found to develop with centrality
 - ► **PWF** does not reproduce the first point

NON-UPC DIMUONS: MOMENTS

- Significant increase in the mean and RMS values is observed as one goes from UPC to higher centralities
- ► Standard deviation shows a much slower increase
- PWF predictions reproduce many of the trends, but the mean and RMS values systematically lie below the data
- > Predicted trends associated with effects of **magnetic fields** on the dimuons are not observed

- ► ATLAS provides **precision results** on $\gamma\gamma \rightarrow \ell^+\ell^-$ with $\ell = e, \mu, \tau$ from UPC Pb+Pb collisions recorded in Run 2
 - ► Measured cross sections reveal systematic differences with STARlight and SuperChic calculations
 - > Perhaps suggesting recent discussions on higher order Coulomb effects [JHEP 2021 (2021) 83]
 - ZDC provides constraints for background and impact-parameter dependence
 - Establish a reference for non-UPC studies
- ATLAS established observation of exclusive ditau production in UPC Pb+Pb collisions at the LHC with above 5σ significance
 - > Data is used to constrain a_{τ} at the LHC with a precision comparable to the best limit from DELPHI
- > $\gamma \gamma \rightarrow \mu^+ \mu^-$ process is used to probe **non-UPC collisions** with high precision
 - ► Broadening of acoplanarity and transverse momentum scale distributions with centrality confirmed
 - ► Also significant **depletion** at close-to-zero α and k_{\perp} values with centrality is established
 - Initial-state calculations quantitatively describe many features
 - ► Effects of **magnetic fields** on the dimuons are not observed
- ► Run 3 is in progress, new Pb+Pb data taking at $\sqrt{s_{\rm NN}} = 5.36$ TeV in fall of 2023
 - ► Expect to **double integrated luminosity** at the end of 2023, a factor of **3.5** more data after Run 3
- All results from ATLAS available at <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u>

Research project partly supported by program "Excellence initiative – research university" for the AGH University of Science and Technology", by the National Science Centre of Poland under grant number UMO-2020/37/B/ST2/01043 and by PL-GRID infrastructure."

