Prospects for open heavy-flavour and quarkonium measurements with NA60+

Roberta Arnaldi (INFN Torino, Italy) for the NA60+ Collaboration

Hard Probes 2023, 29 March 2023

Open and hidden charm: from LHC to SPS

Open charm and quarkonia in nuclear collisions -probes of QGP

HI at high energy: RHIC / LHC

Extensively measured → unprecedented insight on QGP properties at low µ_B

HI at low energy: fixed target

open charm

very few results

- indirect open charm measurement by NA60 with 20% uncertainty
- (1 < M_{μμ} < 2.5 GeV/c²)
 upper limit on D⁰ by NA49

quarkonium

many results for J/ ψ , ψ (2S) by NA50/60, but only at top SPS energy

2

Open and hidden charm: from LHC to SPS

Open charm and quarkonia in nuclear collisions -probes of QGP

HI at high energy: RHIC / LHC

Extensively measured → unprecedented insight on QGP properties at low μ_B

HI at low energy: fixed target

NEW high precision open and hidden charm measurements would allow to

- probe the medium at lower T wrt collider experiments
- 2) explore a non-zero $\mu_{\rm B}$ region

Roberta Arnaldi

3

Open and hidden charm: from LHC to SPS

Open charm and quarkonia in nuclear collisions →probes of QGP

HI at high energy: RHIC / LHC

Extensively measured → unprecedented insight on QGP properties at low µ_R

HI at low energy: fixed target

NEW high precision open and hidden charm measurements would allow to

2) explore a non-zero $\mu_{\rm B}$ region

new experiment proposed at CERN SPS: NA60+

E. Scomparin, Plenary Thur. 30

G. Usai, Future exp. Session, Tue 28

Roberta Arnaldi

The NA60+ experiment at CERN SPS

Goal

high precision measurements of

- dimuon spectrum from threshold to the charmonium mass region
- hadronic decays of charm and \bullet strange hadrons

Setup

- Muon spectrometer
- Vertex spectrometer

Energy/systems

- Pb-Pb and p-A collisions
- energy scan 6 < \sqrt{s} < 17 GeV/c (20 < E_{lab} < 158 GeV/c) high luminosity ~10⁶ Pb/s

Roberta Arnaldi

Open charm in AA at low \sqrt{s}

QGP transport properties

Charm diffusion coefficient depends on the medium T, being larger in the hadronic than in QGP phases

At SPS

- temperatures closer to T_{PC} can be explored
- hadronic phase is a large part of the collision evolution
 sensitivity to hadronic interactions
 input for precision measurements at LHC

charm thermalization

Impact on charm of a shorter-lived medium can be explored

• current measurements on HF-decay electron v₂ at RHIC $\sqrt{s_{_{NN}}}$ = 39 and 62 GeV/c show small v₂ wrt 200 GeV, not conclusive on v₂>0

Roberta Arnaldi

Open charm in AA at low \sqrt{s}

hadronisation mechanisms

Measure the relative abundances of charm-hadrons $(D^0, D^+, D^+_s \text{ mesons and } \Lambda_c \text{ baryons})$ in a high μ_B environment

- Strange/non-strange meson ratio (D_{s}/D^{0})
 - enhanced in AA due to recombination in the strangeness rich QGP
- Baryon/meson ratio (Λ_c /D)
 - enhanced in AA in case of hadronisation via coalescence
 - interesting also in pp and pA, as observed at LHC

total charm cross section

Limited measurements so far (NA60,NA49) because of low yields

- precise measurement requires to reconstructs mesons and baryons ground states
- ideal reference for charmonia

Open charm in pA at low \sqrt{s}

5

nuclear PDFs via D meson production in pA

NA60+ will cover the range 0.1 < x_{Bi} < 0.3 at Q²~10-40 GeV²

• EMC and anti-shadowing regions accessible

NA60+ will use several nuclear targets, from Be to Pb

- access to the A-dependence of nPDF
- precise inputs to nPDF from D production ratios pA/pBe at different \sqrt{s} , vs y and p_{τ}

Roberta Arnaldi

How to measure charm in NA60+

Measurement performed through hadronic decays reconstructed in the vertex telescope

	Mass (MeV)	ст (µm)	decay	BR
D ⁰	1865	123	K⁻π⁺	3.95%
D+	1869	312	K⁻π⁺π⁺	9.38%
D ⁺ _s	1968	147	фπ⁺	2.24%
۸ _c	2285	60	pK⁻π⁺ pK⁰ _s Λ π⁺	6.28% 1.59% 1.30%

Combinatorial background reduced via geometrical selection on the displaced decay-vertex topology

Roberta Arnaldi

Example: D-mesons performance studies

Fast simulation:

D-meson: signal simulated with p_T and y distributions from POWHEG-BOX + PYTHIA Combinatorial background: π , K, p with multiplicity, p_T and y shapes from NA49

Particle transport: carried out in the VT, with parametrized simulation of its resolution Track reconstruction: Kalman filter

D-meson vertex reconstructed from decay tracks Geometrical selections based on decay vertex topology

D⁰ in central PbPb:

- initial S/B ~10⁻⁷
- after selections S/B ~0.5

Charm-hadrons: performance studies

with 10¹¹ MB Pb-Pb collisions (1 month of data taking)

Roberta Arnaldi

Hard Probes 2023

11

Quarkonium: high vs low √s

Different hot and cold nuclear effects at play:

DLI	/ 1	0

Hot matter effects suppression and regeneration

Initial state effects mainly shadowing $10^{-5} < x_{BJ} < 10^{-2}$ for -3 <y< 3

Final CNM effects negligible, due to short crossing time $\tau=L/(\beta_z \gamma)$ ~7 10⁻⁵ (y~3) - 4 10⁻² (y~-3) fm/c

Quarkonium in pA and AA at low \sqrt{s}

AA:

accurate measurements from NA50/NA60 at top SPS energy

- ~30% J/ ψ anomalous suppression in central PbPb, beyond CNM
- consistent with J/ ψ suppression from ψ (2S) and χ_c feed-down
- significant contribution from CNM effects

precise measurement of CNM

- anti-shadowing contribution
- nuclear break-up dominant, stronger at lower \sqrt{s}

Roberta Arnaldi

Quarkonium in NA60+

Quarkonium never studied below top SPS energies

AA: onset of charmonium suppression

accessible via energy scan

 evaluate the threshold temperature of the charmonium melting correlating the onset with T measured via thermal dimuons
 <u>G. Usai, Future exp. session, Tue 28</u>

Quarkonium in NA60+

Quarkonium never studied below top SPS energies

AA: onset of charmonium suppression

accessible via energy scan

- evaluate the threshold temperature of the charmonium melting correlating the onset with T measured via thermal dimuons
 <u>G. Usai, Future exp. session, Tue 28</u>
- pA: cold nuclear matter effects
 - CNM effects increase at low \sqrt{s}
 - mandatory (at the same \sqrt{s} as AA) for a correct evaluation of hot matter effects
 - disentangle the various contributions (shadowing, nuclear breakup...)

Quarkonium in NA60+

Quarkonium never studied below top SPS energies

AA: onset of charmonium suppression

accessible via energy scan

- evaluate the threshold temperature of the charmonium melting correlating the onset with T measured via thermal dimuons
 <u>G. Usai, Future exp. session, Tue 28</u>
- pA: cold nuclear matter effects
 - CNM effects increase at low \sqrt{s}
 - mandatory (at the same \sqrt{s} as AA) for a correct evaluation of hot matter effects
 - disentangle the various contributions (shadowing, nuclear breakup...)

pA: intrinsic charm

- should lead to an enhanced charm production at large x_{r}
- fixed target is the ideal configuration → enhancement is expected closer to mid-y
- dominant effect even with 0.1% probab. of intrinsic charm contribution in the proton (R. Vogt. PRC 103 (2021)3, 035204)
 R. Vogt, HF session, Tue 28
- first evidence recently claimed by NNPDF group based on LHCb data (Nature 608,483(2022))

Roberta Arnaldi

How to measure quarkonium in NA60+

Charmonium production studied via

- J/ψ and ψ(2S) in the μ⁺μ⁻ decay channel
- χ_c → J/ψ γ, with γ measured via conversion in a lepton pair in the vertex telescope

Muon tracks obtained matching tracks in vertex and muon spectrometer

 \rightarrow very good mass resolution, ~30 MeV for the J/ $\!\psi$

Roberta Arnaldi

J/ψ performance study in Pb-Pb

High luminosity is needed to cope with the low production cross sections at low \sqrt{s}

Roberta Arnaldi

18

J/ψ performance study in pA

Assuming:

 $I_{beam} \sim 8.10^8 \text{ p/spill}, 7 \text{ targets}$ (10% $\lambda_{|}$ in total)

NA60+ can aim at

~6000 J/ψ at 50 GeV ~50000 J/ψ at 158 GeV

$J/\psi R_{AA}$ estimate

Precise evaluation of anomalous suppression within reach even at low energy Uncertainties on CNM (σ_{abs}) are ~6 - 15% at 158 and 50 GeV, respectively

Roberta Arnaldi

ψ(2S)

Good charmonium resolution (30 MeV for J/ ψ) will help ψ (2S) measurements:

Assume

• stronger suppression for $\psi(2S)$ than J/ ψ

 $\psi(2S)/\psi$ measurement feasible down to $E_{lab} \sim 100 \text{ GeV}$

Lower E_{lab} would require larger beam intensities/longer running times

Conclusions

22

No results, so far, on open charm and charmonia below top SPS energy

Measurements from $\sqrt{s_{_{NN}}} \sim 6 - 17$ GeV/c extremely relevant to investigate

- QGP transport properties at high μ_{B}
- charm thermalization and hadronization
- intrinsic charm
- onset of charmonium anomalous suppression, correlation with temperature

NA60+: new experiment proposed at CERN SPS

- Project is part of CERN Physics Beyond Collider Initiative
- LOI released at the end of 2022 (arXiv:2212.14452)
- Expect proposal in 2024
- Aim is taking data in 2029, after LHC long shutdown 3

https://na60plus.ca.infn.it/

Feedback on physics program and participation to the NA60+ realization is welcome!

Roberta Arnaldi

Intrinsic charm

Intrinsic charm component of the hadron wave function |uudccbar> Leads to enhanced charm production in the forward region

Assumed intrinsic charm content varied between 0.1% and 1%

R. Vogt PRC 103, 035204 (2021) R. Vogt arXiv:2207.04347

Intrinsic charm

p-Pb collisions: EPPS16 shadowing $\sigma_{abs} = 9, 10, 11 \text{ mb}, E_{lab} = 120, 80, 40 \text{ GeV}$ P_{ic} varied between 0.1 and 1%

 R_{pPb} shape is dominated by intrinsic charm already with Pic = 0.1%

Roberta Arnaldi

without intrinsic charm

Uniqueness of NA60+

The NA60+ physics program needs a large luminosity to search for rare QGP probes

Such a luminosity can be reached with PbPb interactions rates > 10⁵ Hz, reachable with 10⁶s⁻¹ beam intensity in a fixed target environment

In the SPS energy range, no other existing/foreseen facilities that can approach this level of performance

Complementarity with experiments accessing:

- Different (hadronic) observables in the same energy range (STAR BES, NICA, NA61)
- Similar observables in a lower energy range (CBM)

Roberta Arnaldi