Measurement of the centrality dependence of the dijet yield in p+Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV with the **ATLAS detector ATLAS** EXPERIMENT UNIVERSITY OF

Aric Tate for the ATLAS Collaboration

The ATLAS Calorimeter System

ATLAS is a general purpose detector with almost 4π coverage. Its array of calorimeters make it particularly well suited for jet measurements.

The calorimeter system consists of a liquid-argon (LAr) electromagnetic calorimeter, a steel sampling hadronic calorimeter, a LAr hadronic calorimeter, and two LAr forward calorimeters. The entire system has coverage out to $|\eta| < 4.9^{1}$

***** 3D: $p_{T,Avg}$, y_b , y^*

Systematic Uncertainties

LINOIS

The per-event dijet yield is subject to systematic uncertainties associated with the jet energy scale and resolution, the unfolding procedure, and a systematic due to a sector of the HEC being disabled for the running period. An additional systematic on the nuclear thickness function, T_{AB} , is considered for the $R_{\rm CP}$ measurement.

- JES (JER) is dominant systematic on yield (R_{CP})
- T_{AB} uncertainty shown as red bar, , on R_{CP} results
- JES, JER, HEC and T_{AB} systematics treated as correlated in central-to-peripheral ratio

Motivation

3D^{*}analysis in centrality intervals possible

Performance

Triple Differential Per-Event Dijet Yield

The yield spans 7 orders of magnitude at central rapidities and decreases with $p_{T,Avg}$ and with y^* in each y_b bin.

Central-to-Peripheral Ratio

The central-to-peripheral ratio of the per-event dijet yield is constructed to study the centrality dependence of dijet production in p+Pb collisions.

$\langle T_{AB}^{0-20\%} \rangle N_{evt}^{0-20\%} dp_{T,Avg} dy_b dy$

ຄູ່ ATLAS Preliminary	· + ·	$0.0 < y^* < 1.0, -3.0 < y_b^* < -2.0$
36 5^{-1} $\sqrt{s_{NN}} = 8.16 \text{ TeV}, L = 165 \text{ nb}^{-1}$	+	$0.0 < y^* < 1.0, -2.0 < y_{\rm b} < -1.0$

The performance of the jet reconstruction is evaluated by calculating the

Details of the Measurement 6.5 TeV 2.51 TeV/A • Measurement uses anti- k_r R = 0.4 jets at $\sqrt{s_{\rm NN}}$ = 8.16 TeV in *p*+Pb collisions with Pb ion 165 nb⁻¹ of p+Pb data collected in 2016. $p_{\rm T,1}$ > 30 GeV, $p_{\rm T,2}$ > 25 GeV, and -2.8 < η < 4.5

• Chosen kinematic variables allow for full characterization of the partonic scattering system:

• Jet reconstruction efficiency is >99% in all η regions for $p_{\rm T}^{\rm truth} > 25 {\rm GeV}$

- $R_{\rm CP}^{rac{0-20\%}{60-90\%}}(p_{{
 m T,Avg}},y_{
 m b},y^{st})$ $d^3 N_{\rm dijet}^{60-90\%}$ $\langle T_{AB}^{60-90\%} \rangle N_{evt}^{60-90\%} dp_{T,Avg} dy_b dy^*$
- Increased suppression observed for dijets characterized by larger forward boost and by scatterings at higher hard-scale $p_{T,Avg}$
- Possible to directly map the results to approximated parton-level kinematics by rescaling the abscissa of each experimental point

The parton-level kinematics can be approximated by using the average value of y_h and y^* in each kinematic bin, and the midpoint of each $p_{T,Avg}$ bin.

- Log-linear decrease in $R_{\rm CP}$ observed as a function of x_p , when moving towards proton's valence region. This trend breaks down when approaching low- x_p .
- For each slice in $y_{\rm b}$, a log-linear trend with increasing suppression when moving toward higher x_{Pb} is observed. Overall, there is more suppression as low- x_{Pb} is approached.
- One-dimensional bayesian unfolding in $p_{\rm T,Avg}$ is performed, with an efficiency correction for any residual $y_{\rm h}$ or y^* migration.

- Observed results suggest that the trend is governed by physics effects similar to those probed in the inclusive production of jets in p+Pb collisions at 5.02 TeV.
- Backward-most bins excluded due to the sizable impact of the fiducial cut applied to ensure no contamination from jets in the Pb-going FCal.
 - The results can be analyzed as a function of the approximated x_p in intervals of x_{Pb} .
- Highest suppression observed corresponds to the lowest $x_{\rm Pb}$ interval
- Log-linear structure breaks-down for results in the Pb valence region

¹ATLAS Collaboration, JINST 3 (2008) S08003. ²ATLAS Collaboration, PLB 748 (2015) 392–413.

This work is supported by the National Science Foundation Grant no. PHY-2111046