# Thermalization of a jet wake in QCD kinetic theory

#### Fabian Zhou, ITP Heidelberg Hard Probes 2023





Co-authors: Jasmine Brewer, Aleksas Mazeliauskas, in progress 1/14

#### Motivation

- Medium interactions  $\rightarrow$  jet quenching
- Study far from equilibrium evolution
- Interplay between jet quenching and thermalization



#### Goal:

**Energy loss in an expanding plasma** 

#### Framework

• Effective kinetic theory for hot gauge theories AMY [hep-ph/0209353]

Background  

$$\left(\partial_{\tau} + \frac{p_z}{\tau} \partial_{p_z}\right) \bar{f}(\tau, \mathbf{p}) = -C[\bar{f}]$$
Provide the second seco

$$\left(\partial_{\tau} + \frac{p_z}{\tau}\partial_{p_z}\right)\delta f(\tau, \mathbf{p}) = -\delta C[\bar{f}, \delta f]$$

Background thermalization: Kurkela, Zhu [1506.06647], Kurkela, Mazeliauskas [1811.03068] Du, Schlichting [2012.09079]

Jet thermalization: Kurkela and Lu [1405.6318], Methar-Tani, Schlichting, Soudi [2209.10569]

#### New: Jet perturbations on top of an expanding background!

#### **1. Initial conditions: thermal**

Parton interacting with the medium No vacuum radiation

$$f(\tau_0, \mathbf{p}) = n_{\rm BE}(p) + \delta f_{\rm Jet}(\tau_0, \mathbf{p})$$

- Background: Bose-Einstein
- Jet: Gaussian at  $p_x = 15T$

$$\delta f(\tau_0, \mathbf{p}) \to \delta f_{\rm eq}(p)$$



#### Inverse energy cascade

 Underoccupied system Kurkela and Lu [1405.6318]  $10^{-}$ 1) Number transport  $(d) f_{10}$ 2) Energy transport  $10^{-1}$ 5.0124.98  $10^{0}$  $10^{1}$ 

#### Now: study angular dependence!

p

#### Radiation vs. elastic scattering



## Equilibration along each $\theta$ -slice?

#### Jet distributions

• In equilibrium:  $\delta f_{eq}(p) = n_{BE} \left( \frac{p}{T + \delta T} \right) - n_{BE} \left( \frac{p}{T} \right) \sim \delta T$ 



#### Jet distributions

• In equilibrium:  $\delta f_{eq}(p) = n_{BE} \left(\frac{p}{T+\delta T}\right) - n_{BE} \left(\frac{p}{T}\right) \sim \delta T$ • Normalize  $\int dp p^2 \delta f(p, \theta) = 1$ 



Equilibrium distributions with temperatures  $\delta T(\theta)$ !

8/14

## Moments of $\delta f$

$$I_n(\theta) \equiv 4\pi \int \frac{p^2 dp}{(2\pi)^3} p^n f(p,\theta)$$
$$= \mathcal{N}_n \times T(\theta)^{n+3}$$

- Angular temperature  $\overline{T} + \delta T(\theta)$
- Collapse of different  $\boldsymbol{n}$



Thermalization in p along each  $\theta$  -slice!

#### **Chemical equilibration**

- No expansion
- QCD  $\rightarrow C[f]$
- Start with gluonic  $\delta f_{\rm Jet}( au_0,{f p})$

1)Isotropization
 2)Chemical equilibration



cf. Sirimanna et al. 2211.15553

#### 2. Initial conditions: anisotropic

$$f(\tau_{0}, \mathbf{p}) = \bar{f}(\tau_{0}, \mathbf{p}) + \delta f_{\text{Jet}}(\tau_{0}, \mathbf{p}) \qquad p_{x} = \overset{\cos \theta = 0.0}{15Q} \overset{0.2}{}_{0.5}$$
• Non-thermal background:  
Kurkela, Zhu [1506.06647]  
 $\bar{f}(p, \theta) \propto \exp\left(-\frac{2}{3}\frac{p^{2}}{Q^{2}}[1 + (\xi^{2} - 1)\cos^{2}(\theta)]\right)^{\text{QGP}}$ 
Jet Momentum space  
 $\delta f(\tau_{0}, \mathbf{p}) \rightarrow \delta f_{\text{hydro}}(\tau, p, \theta)$ 

#### Comparison to azimuthal sym. perturbation

$$\delta f_{\text{sym.}}^{\text{az.}}(\tau_0, p, \theta) = \varepsilon \overline{f}(p, \theta)$$

• Azimuthal symmetric

## To study hydrodynamization, compare time evolution!



#### Hydrodynamization

- Scaled time  $\tilde{\omega} = \frac{\tau T_{\rm eff}(\tau)}{4\pi\eta/s}$ 
  - Distributions agree at  $\,\tilde{\omega}\approx 2$

 $\rightarrow$  Loss of memory

#### Hydrodynamization!



anisotropy

 $P_T - P_L$ 



#### Summary & Outlook

#### We studied back to back parton thermalization in QCD kinetic theory: Thermal background:

- Angular dependent equilibration due to colinear radiation
- Chemical equilibration after isotropization in QCD

#### **Expanding background:**

- No known analytical hydrodynamized distribution
- Different perturbations merge at later times than background hydrodynamization
   Outlook:
- Energy and coupling dependence of jet wake thermalization
- Extraction of jet response functions (a la KoMPoST) -> useful for phenomenology

• Temperature perturbation  $\delta T(\theta)/\overline{T}$ 



• Isotropization for different couplings and different energies (expanding case)



- Jet distributions as a function of time
- Reaction plane (x-z)



- Jet distributions as a function of time
- Transverse plane (x-y)
- Negative due to out-of-plane scatterings





• Temperature perturbation  $\overline{T}/\delta T(\theta)$  expanding background at  $\phi = 0$ 



• Temperature perturbation  $\overline{T}/\delta T(\phi)$  expanding background at  $\cos \theta = 0$  (transverse plane)



• Hydrodynamization in the transverse plane

