Open heavy-flavour production from the high-mass dilepton spectrum in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Michele Pennisi,

on behalf of ALICE Collaboration

Università degli Studi and INFN Torino

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear

Aschaffenburg, April 27-31, 2023

The ALICE detector (Run 2 configuration)

The ALICE detector is specifically designed to study heavy-ion collisions

• Central Barrel: reconstruct dileptons at mid-rapidity -> |y| < 0.9

Charm cross section

open point: reflected

• $(m_{\mu^+\mu^-}, p_{T, \mu^+\mu^-})$ PYTHIA8 fit

Phys. Lett. B788 (2019) 505

open point: reflected

Beauty cross section

Total Fit Data

 $\mu^+\mu^- \leftarrow c,b$

• $(m_{\mu^+\mu^-}, p_{T, \mu^+\mu^-})$ PYTHIA8 fit

 $(m_{e^+e^-}, p_{T, e^+e^-})$ PYTHIA6 fit

Phys. Lett. B788 (2019) 505

ALICE Preliminary

pp, \sqrt{s} = 13 TeV

FONLL CTEQ6

unc. tot.

unc. scale

unc. mass

ALICE Preliminary

pp, \sqrt{s} = 13 TeV

FONLL CTEQ6

unc. tot.

unc. scale

unc. mass

unc. pdf

unc. pdf

do Se

 10^{2}

ALI-PREL-538716

þ

do pp

 10^{2}

10

ALI-PREL-538708

ALICE Preliminary

pp, \sqrt{s} = 13 TeV

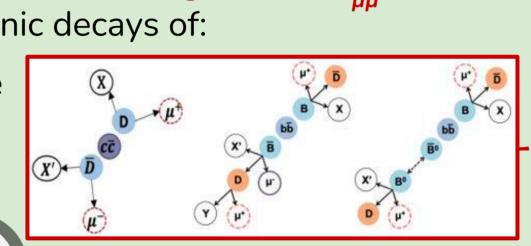
Reconstructed µ+µ-

 $p_{\mathrm{T},\mu^+\mu^-}$ < 10 GeV/c

 $2.5 < y_{\mu^+\mu^-} < 4.0$

1.5

• Muon Spectrometer: reconstruct dileptons at forward rapidity -> 2.5 < y < 4

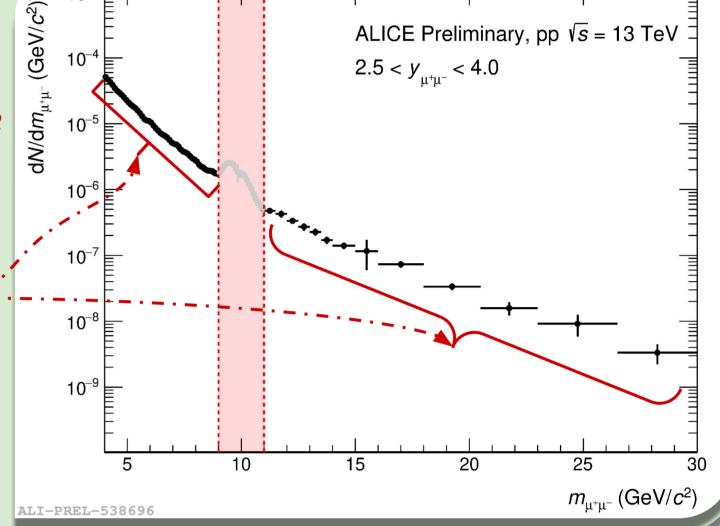

Muon Spectrometer

Front Absorber: reduces the particle rate coming from the interaction point, filtering out

- **Tracking system:** used to reconstruct muon tracks, consists of 10 cathode pad chambers arranged in 5 stations
- **Dipole magnet:** provides a magnetic field integral of 3 Txm
- **Trigger system:** located after an iron wall, consists of 4 RPC planes arranged in two stations

Physics Motivation

- Heavy-quark production represents a stringent test of perturbative QCD (α_{c} < 1 due to their large masses) [1]
- The measurement of heavy-flavor (HF) production in pp is a mandatory reference for studies in nuclear collisions where a quark-gluon plasma (QGP) is produced [2]
- ☐ New approach in ALICE to investigate the heavy-quark production in pp collisions: explore the region $m_{uu} > 4 \text{ GeV/}c^2$
- \square $\mu^+\mu^-$ production in the <u>continuum region</u> $4 < m_{\mu\nu} < 9 \text{ GeV/c}^2$ mainly due to semileptonic decays of:
 - hadronization of cc and bb pairs [3]



Light mesons (π/K) pairs (combinatorial background)

Analysis approach

Main goal:

evaluate the $c\bar{c}$ and $b\bar{b}$ cross-section in the rapidity region $2.5 < y_{uu} < 4$, comparing the dimuon invariant mass (m) and p_{T} distributions with corresponding signal templates

4. Results

The charm and beauty differential cross sections have been evaluated from:

$$d\sigma_{car{c}/bar{b}}^{meas}/dy_{\,2.5 < y < 4} = rac{N_{\mu\mu\,,\,MB\,data}^{car{c}/bar{b}}^{fit}}{N_{\mu\mu\,,\,MB\,PYTHIA}^{car{c}/bar{b}}^{PYTHIA}} imes d\sigma_{car{c}/bar{b}}^{PYTHIA}/dy_{\,2.5 < y < 4}$$

- The results are compared with <u>dielectron</u> measurements @13 TeV* [5] and with FONLL <u>calculations</u> [6]
- * Update of $c,\overline{c} \rightarrow e^+e^-$ will be released soon, with an updated BR
- ❖ Good agreement with <u>FONLL</u>

1. Data sample & analysis steps

pp collision dataset collected at $\sqrt{s} = 13$ TeV in 2018 (Run 2)

✓ Muon/Dimuon cuts:

- \downarrow 2.5 < η_u < 4 corresponding to the spectrometer acceptance
- up matching of a track reconstructed in the tracking chambers with a track
- ↓ cut on the distance of closest approach to the primary interaction vertex
- \checkmark 2.5 < $y_{\parallel \parallel}$ < 4 to match the spectrometer acceptance

Conclusion:

- First measurement of charm and beauty cross sections at forward rapidity with
 - Results in good agreement with theoretical calculations (FONLL), providing a complementary measurement w.r.t other

- ALICE from the dimuon continuum region
 - ALICE results at mid-y

Future prospects:

- Obtain HF templates with NLO MC generator (<u>POWHEG</u> [7])
- Study possible contributions in the very high m and p_{T} regions from **Drell-Yan process**

- reconstructed in the trigger system with $p_{T} > 0.5 \text{ GeV/}c$

Analysis steps:

- 1. Dedicated MC to simulate different $\mu^+\mu^-$ sources above $m_{\mu\mu} = 4 \text{ GeV}/c^2$
 - 2. Creation of a cocktail based on the HF $\mu^+\mu^-$ sources as provided by PYTHIA8 [4]
 - 3. Simultaneous fit of p_{T} and m data distributions with the template built as the <u>superposition</u> of the $\mu^+\mu^- <-c$, and $\mu^+\mu^- <-b$, b PDF

2. Template creation

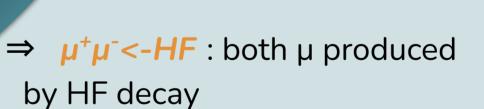
Minimum Bias production

- ☐ 48M events with <u>PYTHIA8 with Monash tune</u>
- \rightarrow study the contamination from LF-> $\mu^+\mu^-$ and mixed LF,HF -> $\mu^+\mu^-$

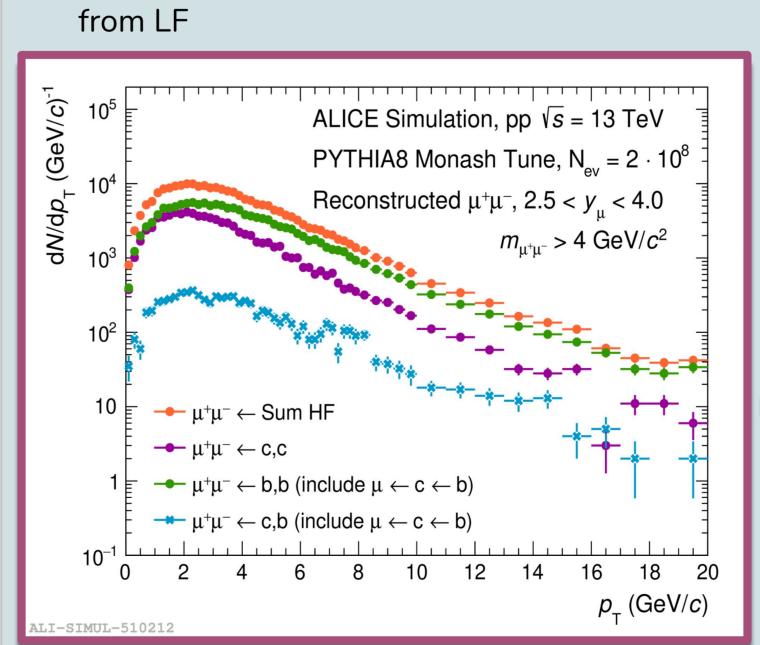
ALICE Simulation, pp $\sqrt{s} = 13 \text{ TeV}$

Reconstructed $\mu^{+}\mu^{-}$, 2.5 < $y_{...}$ < 4.0

PYTHIA8 Monash Tune, Norm. to $N_{\text{ev}} = N_{\text{Inel}} + N_{\text{Diff}}$


- $\mu^+\mu^- \leftarrow Sum LF$

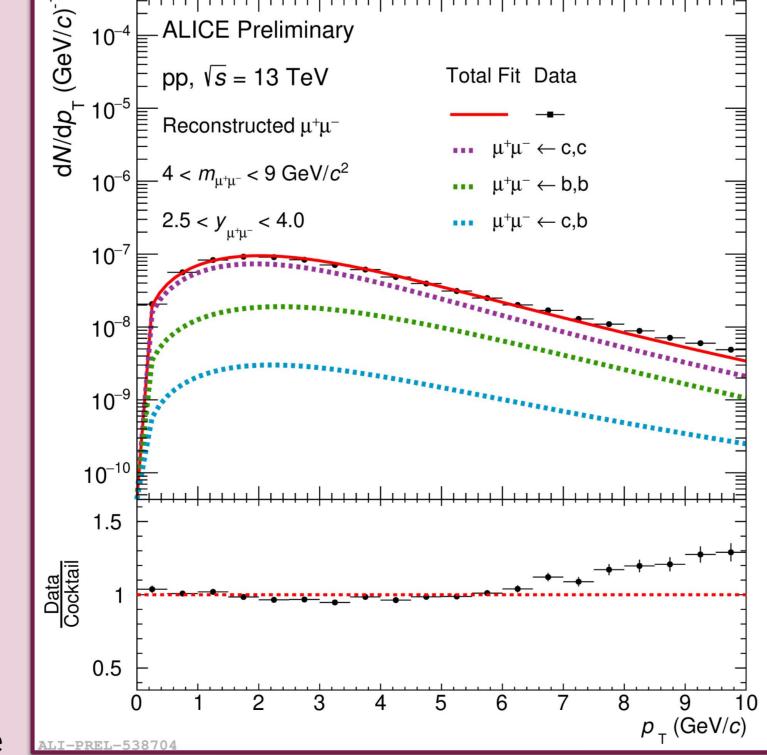
→ μ⁺μ⁻ ← Sum HF (incl. resonances)


← LF. HF (incl. resonances)

 $m_{\mu^+\mu^-}$ (GeV/ c^2)

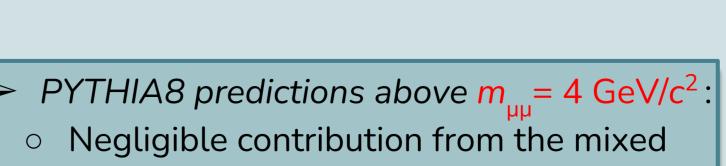
Dimuon per p-p collision: distributions normalized to the number of simulated events N

- $\Rightarrow \mu^{+}\mu^{-} < -LF$: both μ produced by LF decay
- $\Rightarrow \mu^{+}\mu^{-} < -LF, HF$: one μ from HF, the other μ



High statistics HF-enriched productions:

- 200M events with PYTHIA8
 - triggered by the production of a pair of HF quarks, with at least a decay μ in the acceptance of the spectrometer
- $\Rightarrow \mu^+\mu^- <- c,c$: both μ produced by prompt charm particles decay
- $\Rightarrow \mu^+\mu^- < -b, \bar{b}$: both μ produced by beauty particles decay (include non prompt charm component)
- $\Rightarrow \mu^+\mu^- <- c,b$: one μ from prompt charm particle, the other μ from beauty particle (include non prompt charm component)



3. <u>Data Analysis</u>

- Estimation of the charm and beauty yields by performing a *simultaneous unbinned fit* to the m and p_{T} dimuon data distributions using the HF templates
 - ightharpoonup Kinematic region of the fit: $4 < m_{\mu\mu} < 9$ GeV/ c^2 and $p_T < 10$ GeV/c
 - > HF-mixed contribution fixed to the 4% of total number of dimuons as per PYTHIA8 simulation

Good agreement between the fit and the data in the m and p_{T} region studied (slight underestimation at high- p_{τ})

 \circ $\mu^+\mu^-$ mainly produced by b decays

LF-HF and LF components

HF-mixed contribution is small

[2] N. Armesto, J. Phys. G, vol. 32, pp. R367–R394, 2006 [5] Acharya et al, Phys. Lett. B, vol. 788, pp. 505–518, 2019

 $m_{\mu^+\mu^-}$ (GeV/ c^2)

[3] Aidala et al, Phys. Rev. D 99, 072003 (2019)

[6] M. Cacciari et al., arXiv:1205.6344 800 [hep-ph]