

Quarkonium production and flow measurements in small systems with ALICE

Tabea Eder for the ALICE Collaboration

Institute of Nuclear Physics, University of Münster t_eder04@uni-muenster.de

Introduction

Quarkonium production in small systems:

- Collective-like behaviour observed in high multiplicity events:
- \rightarrow Does J/ ψ exhibit flow in pp collisions?
- J/ ψ as a function of charged particle multiplicity: investigate relation between hard (J/ ψ) and soft (multiplicity) event components
- Quarkonium production mechanisms are not fully understood
- Tests perturbative (heavy quark production in initial hard scattering) and non-perturbative (binding into quarkonia) QCD regimes
- Reference for the quarkonium production in Pb–Pb collisions (J/ ψ suppression, (re)generation and

J/ψ production at midrapidity in p–Pb at 8.16 TeV

Inclusive J/ ψ production:¹

- y-dependent R_{pPb}:
- Overall trend described by all models
- $-R_{pPb}$ at midrapidity tends to be above or at upper limits of model predictions
- Transport model (including final-state effects) underestimates R_{pPb} at backward and midrapidity

flow) and p-Pb collisions (Cold Nuclear Matter effects)

Quarkonium signal extraction

Midrapidity:¹ $(J/\psi \rightarrow e^+e^-)$

Forward rapidity:² (J/ ψ , ψ (2S) and Υ (nS) $\rightarrow \mu^+\mu^-$)

ALI-PUB-529519

• Quarkonia yields are extracted by fit to (binned) invariant mass spectrum

 Non-prompt fraction is extracted at midrapidity by simultaneous fit of the invariant mass and pseudoproper decay length distribution • J/ ψ cross section (extrapolated to $p_T = 0$): 1409 ± 89(stat.) ± 84(syst.) μ b

Prompt and non-prompt J/ ψ **production:**

- The measured cross section and $R_{\rm pPb}$ well described by calculations based on nCTEQ15HQ nPDFs⁷
- R_{pPb} of prompt J/ ψ described by CEM based calculations⁸ and transport model⁹ in applicability range at low p_T
- FONLL+EPPS16 predictions¹⁰ for R_{pPb} of non-prompt J/ ψ agree with data within uncertainties, which get larger for smaller p_T

• R_{pPb} compatible with unity within uncertainties ($p_T > 2 \text{ GeV}/c$)

ALI-PUB-529547

J/ψ elliptic flow at forward rapidity in pp at 13 TeV

 Motivation: Collective-like behaviour has been observed in high-multiplicity ("central") pp collisions

• **Results:** $J/\psi v_2$ in high-multiplicity pp collisions at 13 TeV is compatible with zero $\Rightarrow J/\psi$ does not seem to exhibit flow

Quarkonium production at forward rapidity in pp at 5 TeV

Summary

ALI-PUB-529543

J/ψ production at midrapidity in p–Pb at 8.16 TeV:

- p_T -integrated nuclear modification factor of J/ ψ in p–Pb collisions lies between forward and backward rapidity, as predicted qualitatively by models
- J/ ψ shows moderate cold nuclear matter effects in the studied p_T and rapidity range

Quarkonium at forward rapidity in pp:

- J/ ψ does not seem to exhibit flow (in contrast to p–Pb and Pb–Pb collisions)
- y and p_T differential and energy dependent charmonium (bottomonium) cross sections², as well as the $\psi(2S)$ to J/ ψ ratios, overall well described by NRQCD based^{3,4,5} and/or ICEM⁶ models, across different collision energies
- Ratios of charmonium cross sections at different collision energies only partly described by the same models
- Relatively large model uncertainties for y differential and and p_T differential $\Upsilon(1S)$ cross sections (not shown)

• y and p_T differential quarkonium cross sections, $\psi(2S)$ to J/ ψ ratios overall well described by NRQCD based or ICEM models

• Outlook:

Differential measurements of the $\Upsilon(nS)$ states in pp at 13 TeV in preparation

References

[1] ALICE Collaboration, arXiv:2211.14153 (2022)
[2] ALICE Collaboration, Eur. Phys. J. C 83 (2023) 61
[3] NRQCD (Ma *et al.*), Phys. Rev. Lett. 106 (2011) 042002
[4] NRQCD+CGC (Ma *et al.*), Phys. Rev. Lett. 113 (2014) 192301
[5] NRQCD (Butenschön *et al.*), Phys. Rev. Lett. 106 (2011) 022003
[6] ICEM (Cheung *et al.*), Phys. Rev. D 98 (2018) 114029
[7] nCTEQ15HQ (Duwentäster *et al.*), Phys. Rev. D 105 (2022) 114043
[8] EPS09NLO+CEM (Albacete *et al.*), Int. J. Mod. Phys. E 22 (2013) 1330007
[9] Transport model (Du *et al.*), JHEP 03 (2019) 015
[10] FONLL+EPPS16 (Eskola, Paakkinen, Paukkunen, Salgado), Eur. Phys. J. C 77 (2017) 163

HP 2023, Aschaffenburg, Poster session 28.03.2023