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Motivation Bulk Matter Observables

In ultra-relativistic HICs at RHIC and LHC a hot and dense form of matter composed of deconfined - Transverse momentum distributions (Fig. 3):
quarks and gluons, named QGP, is produced.

The goal of experimental measurements is to investigate the QQGP and to understand how it is pro-
duced, evolves, and impacts measurements.

EPOS [1, 2| and PHSD (3, 4] are two comprehensive approaches to investigating the initial phase,
time evolution, and QGP hadronization, and final hadronic interaction, see Fig. 1.
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The main idea to combine EPOS and PHSD
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- Combining the initial EPOS phase (EPOSi) with the evolution from PHSD (PHSDe), resulting in _ e Ao e R
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the EPOSi+PHSDe, see Fig. 1. —— L M yo LTl
- Comparing EPOSi+PHSDe and pure EPOS: By (Ee) Py (SehE)
- Two models that have different evolutions but the same initial conditions. Figure 3. Transverse momentum distributions of identified particles in different simulations compared to PHENIX data
- Comparing EPOSi+PHSDe and pure PHSD: (symbols) [5] and STAR data (symbols) [6]. The simulations have been done for Au-Au at 200GeV /A.
- Two models that have different initial conditions but the same evolution.
- Separate ”initial” and ”evolution” effects.
- Investigate the influence of the initial conditions on observables. = - - - = - - -
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Figure 1. The EPOS and PHSD stages to investigate the entire space-time evolution of matter in HICs. The new R s | 01 3 3 3 T
approach is called EPOSi+PHSDe since it integrates the initial conditions of EPOS (EPOSi) with the evolution of matter /A:/Q = ‘ A %\" 5 %
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Figure 4. Elliptical flow vy and Triangular flow v3 coefficients of identified particles for EPOS (blue curve),
EPOSi+PHSDe (red curve), and PHSD (green curve), for AuAu collisions at 200 GeV /A, as the function of the transverse
momentum pr, for different centrality ranges, compared to PHENIX data (points) [7].

Energy density evolution in different simulations

- EPOS simulations are quite close to the data for low and intermediate pp. Intermediate pp are
strongly affected by hydrodynamic flow, and the effect increases with particle mass.
- EPOSi+PHSDe and PHSD simulations are close to the data at small pp (< 1 GeV/c) while at
; intermediate pp values (1 GeV/c < pp < 5 GeV/c), in particular at central collisions, the data are
d°p . underestimated and the deviation increases with particle mass.
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To see the differences between these three models, EPOS, EPOSi+PHSDe, and PHSD, we study the

radial expansions via energy density evolutions using the energy-momentum tensor:

- The collective push” from radial flow in EPOS during the hydro phase is much stronger

where ¢ 'is a position vector, p indicates a momentum vector, and f denotes the phase space density for compared to the transverse pressure in EPOSi+PHSDe and PHSD generated by partonic
a given time. The energy density is given as T in the comoving frame, see the evolutions in Fig. 2. scattering and potential interaction in the quasiparticle picture.

- Time < 3 fm/c:

- Similar energy density profiles of EPOS and EPOSi+PHSDe due to similar initial conditions.
- The evolution of the shape of energy density in pure PHSD is different, although it is comparable
in magnitude to the other models. Conclusion

- Time > 3 fm/c:
- EPOS in the hydro phase has a strong transverse expansion and evolves in an asymmetric fashion,

which leads to larger transverse flows. The initial conditions from pure EPOS (and similar in EPOSi+PHSDe),
- EPOSi+PHSDe and pure PHSD show more symmetric expansion in the transverse plane than pure based on Parton Based Gribov Regge Theory (PBGRT)’ show more asym-
EPOS, which affects observables like transverse momentum and elliptic flow. metric energy density profile in coordinate space than the profile based on

At — Au@200GeV | A, b= 7fm At — Au@200GeV | A, b= 7fm PYTHIA strings initial conditions in the PHSD.
_EPOSi+PHSDe ~  PHSD EPOS EPOSi+PHSDe ~  PHSD Hydrodynamic expansion in EPOS converts the initial asymmetric shape of
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energy density to a larger transverse flow more effectively (especially for

larger pr) than the microscopic partonic interactions based on DQPM as
used in pure PHSD and EPOSi+PHSDe.
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Figure 2. Time evolution of the energy density in the transverse plane (x — y coordinates), the longitudinal coordinate z
being zero, in Au-Au collisions at 200 AGeV, for an impact parameter of 7 fm. We show results for EPOS (left column),

EPOSi+PHSDe (middle column), and PHSD (right column). The rows refer to different times.
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