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1 Motivation

▷ A full first-principles description of the time evolution of the quark-gluon plasma
(QGP) in heavy-ion collisions is still missing.

▷ Current models and approaches to non-equilibrium QCD successfully explain parts of
the QGP evolution but are limited in applicability (class.-stat., kinetic theory, AdS/CFT).

▷ Hydrodynamical equations require transport coefficients (viscosities).

▷ Evolution equations for hard probes (e.g., jets, heavy quarks / quarkonia) also need
transport coefficients (jet quenching parameter q̂, diffusion coefficient κ, . . . ).

▷ Direct computations of such QCD real-time observables are difficult due to the infa-
mous sign problem in Z =

∫
DAeiS[A] stemming from the real-time path in Fig. 1.

Figure 1: Continuous and discretized Schwinger-
Keldysh contour: real-time + thermal (Euclidean) path.
Path integral Z regularized by tilting the contour with α.

2 Complex Langevin (CL) for real-time Yang-Mills simulations

▷ Approach: Complex Langevin (CL) method for Yang-Mills theory (continuum)
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▷ To compute oscillatory expectation values at sufficiently late Langevin times θ:
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▷ Complexification of Lie algebra (generators ta) of the gauge group: SU(N) → SL(N,C)
▷ Discretized CL step (size NtN
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3 Modern stabilization methods
▷ Adaptive stepsize (AS) [1]

counteracts numerical runaways:
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▷ Gauge cooling (GC) [2]
stabilization by reducing ‘distance’
F [U ] to SU(N):
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4 Stabilization using new anisotropic kernel Γ
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Figure 2: O for contour tilt angles α of Fig. 1 with AS and (i) no further stabiliza-
tion, (ii) with GC and adjusted Nt, and (iii) with GC and our kernel Γ(Nt). The
gray curve shows the result on a Euclidean (thermal) time path.
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Figure 3: Normalized histogram of the non-unitary part of the drift term (i) without
stabilization, (ii) with GC and adjusted Nt, and (iii) with GC and our kernel Γ(Nt).

▷ Studies of SU(2) Yang-Mills theory in Ref. [3] on the tilted real-time path (yellow in Fig. 1) used the unkerneled CL equation (1) with
Γµ = 1. We reproduce their results as dashed lines in Fig. 2 for the average spatial plaquette (O = ReTrUij).

▷ They quickly converge to a wrong value in Fig. 2 although ⟨O⟩ should be time-path independent and agree with the Euclidean result
(gray) due to thermal time-translation invariance. Additional GC and increasing Nt for fixed Ntat does not improve convergence (dotted).

▷ Exploiting the kernel freedom of CL, in Ref. [4] we introduce a new anisotropic kernel with Γ0 = |at|2/a2s and Γi = 1 in Eq. (1), which
we motivate using a new and unambiguous contour parameter formulation of the CL equation. In Fig. 2 simulations with our kernel and
the same Nt as before form a broad meta-stable θ-region that yields the correct thermal result after averaging over it (high precision).

▷ The improved convergence can be also seen in Fig. 3 where we show the histogram of the imaginary part of the drift DSW = δSW

δÃ
for

tan(α) = 0.625. Without our kernel, the stochastic process strays deep into the complex configuration space, leading to instabilities or
wrong convergence. In contrast, Γ(Nt) yields increasingly localized distributions with growing Nt, and thus correct CL processes.

5 Conclusion
▷ SU(2) gauge theory on complex time paths with CL requires additional stabilisation

▷ Our kernel Γ improves stability and leads to correct convergence

⇒ Extrapolation to Schwinger-Keldysh time contour, renormalization and scale setting

⇒ Potential application to transport coefficients, non-equilibrium dynamics of QCD
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