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Boltzmann Equation in Diffusion Approximation

• In the early stages after a heavy ion collision, a dense system of gluons is produced.

•We use the Boltzmann Equation in the Diffusion Approximation (BEDA) in order
to study this process in a homogeneous and non-expanding system.

∂tf
a = Ca

2↔2 + Ca
1↔2 , a = {g, q, q̄}

•The distribution functions fa allows us to compute some characteristic parameters of
the system such as the jet-quenching parameter, the Debye mass and the effective
temperature and baryonic chemical potential of the system.
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•The diffusion approximation lies in the assumption of small angle scattering dominance.

The collision kernels

We distinguish three different terms in the collision kernel:

Flux 2 ↔ 2. Can be rewritten as a
Focker-Planck-like term in diffusion ap-
proximation [1], [2].

Source 2 ↔ 2. Additional term respon-
sible of quark-gluon interaction [2].

Splitting 1 ↔ 2. This kernel is com-
puted in the deep LPM regime [3], [4].

Rapid thermalization in the

soft sector

•At early times, the g ↔ gg and g ↔ qq̄ are the
dominant processes in the production of gluons
and (anti)quarks, respectively.

•One can see that both gluons and quarks
quickly fill a thermal distribution up to a char-
acteristic momentum
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F Īc = Īc[f ]

pfp(t) ≈ T∗

[
1−

(
1− pfp(t = 0)

T∗

)
e
−
(
pA∗
p

)5
2
]

Fp(t) ≈ F0(T∗, µ∗)− [F0(T∗, µ∗)− F (0)]e
−
(
pF∗
p

)5
2

where F0(T∗, µ∗) = 1/
(
e−

µ∗
T∗ + 1

)
.

Initially under-populated system of pure gluons

Parametric estimation
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Numerical results
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We distinguish three different stages
[5] in this case just by doing a paramet-
rical study of some characteristic quan-
tities:

1.Hard gluons radiate soft gluons,
which quickly thermalizes with a mo-
mentum scale p∗ and a higher tem-
perature than the equilibrium one,
Teq.

2.Soft sector undercools Teq , and its
typical momentum is pushed by elas-
tic scatterings. Debye mass receives
dominant contribution from the soft
sector.

3.Reheating of soft gluons and mini-
jet quenching. The Debye mass
and the jet quenching parameter are
dominated by the soft sector.

Complete thermalization of under-populated system

Let us study an initially under-populated system of gluons, but now quarks are involved
in the calculation.

•The behavior of the full system
macroscopic parameters is deter-
mined at early times by the glu-
ons.

•Only when quark number is com-
parable with the gluon number
the qualitative behavior is mod-
ified.

•All quantities acquire a thermal
value smaller than the pure gluon
scenario.

•Gluon number has a maximum
after which decreases to reach its
thermal value. 10 1 101 103
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Summary and Outlook

•We present a full set of BEDA equations which describe the behavior of an spatially
homogeneous system of quarks and gluons.

•At early times, both soft quarks and gluons rapidly acquire a thermal distribution
due to 1 ↔ 2 splitting.

•Thermalization of under-populated systems of pure gluons is achieved after three stages.

–Under-cooling and reheating of the system is identified.

•For a initially under-populated system of gluons, quarks only play an important role
after the second stage.

•The gg → qq̄ plays an important role in quark production and also in the decrease of
gluon number density.

• In the future, more general geometries will be explored in order to study physical
observables such as flow.

Quark production
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Nf = 0 • Initially, the quark number

grows linear with time due to
the g → qq̄ splitting.

•At Qt ∼ α−2
s , the quark pro-

duction is accelerated (nq ∼
(Qt)

3
2) due (parametrically) to

both g → qq̄ and gg → qq̄ pro-
cesses.

•Quark production is decelerated
when gluon number start to drop.
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