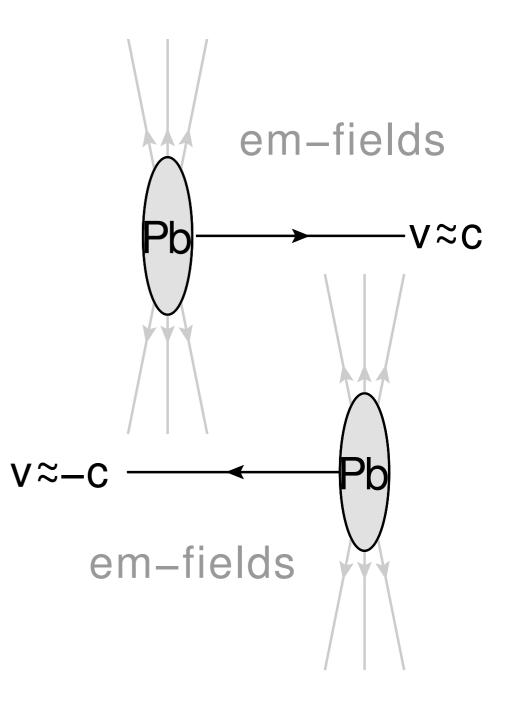
BSM physics using photon-photon fusion processes in UPC in Pb+Pb collisions with the ATLAS detector

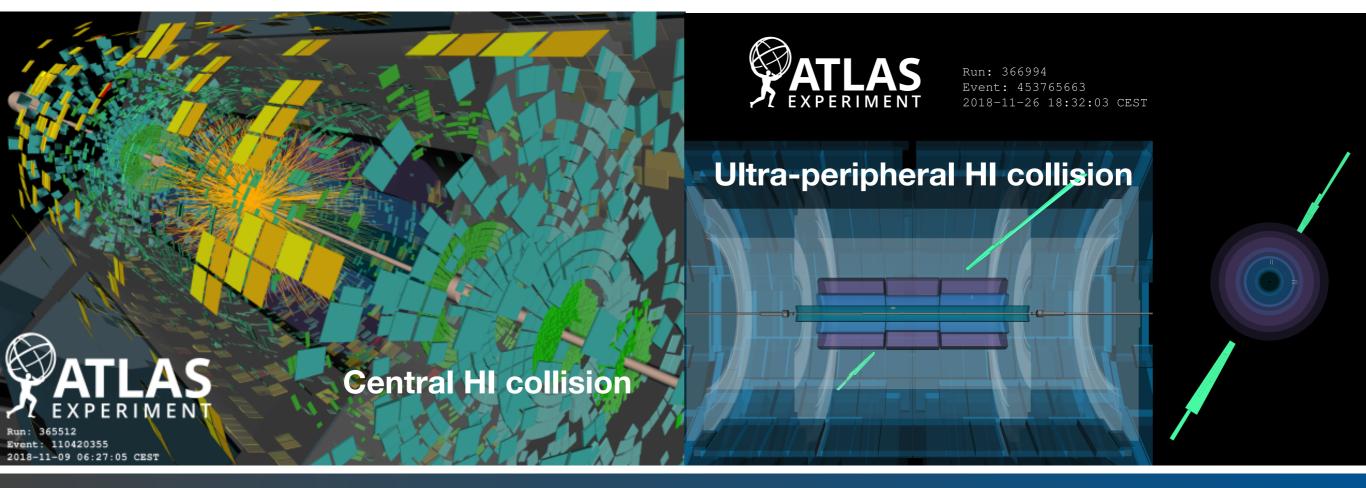
Agnieszka Ogrodnik (Prague CU)

for the ATLAS Collaboration

UNIVERSITY

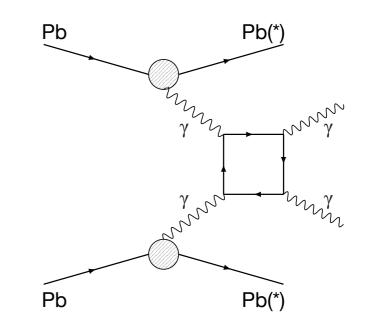


HardProbes2023, 28.03.2023


Ultra-peripheral collisions

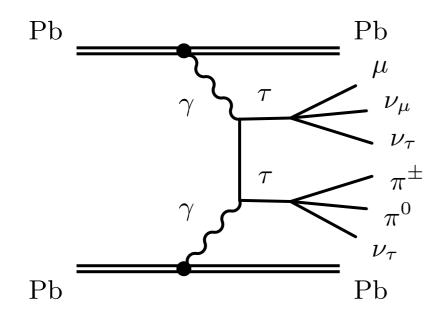
- In ultra-peripheral heavy-ion collisions (UPC) we observe photonphoton interactions
 - New research opportunities
- Electromagnetic (EM) fields of relativistic ions considered as fluxes of photons (they scale with ~ Z²)
- Described in a Equivalent Photon
 Approximation (EPA) formalism
- Reaction cross-section calculated by convolving the respective photon flux with the elementary crosssection for the process

Ultra-peripheral collisions


- Advantages of UPC heavy-ion collisions:
 - Increased cross-sections wrt to pp collisions (cross-sections scale by Z⁴ what is ~4.5x10⁷)
 - Very low hadronic pileup exclusive selections possible
 - Low p_T particles can be triggered and reconstructed

Motivation

- This talk discusses new measurements performed by the ATLAS Collaboration in UPC PbPb at 5.02 TeV:
 - Observation of the γγ→ττ process in Pb+Pb collisions and constraints on the τ-lepton anomalous magnetic moment with the ATLAS detector: arXiv:2204.13478, accepted by PRL
 - Pb Pb γ τ ν_{μ} ν_{τ} τ π^{\pm} π^{0} ν_{τ} Pb Pb

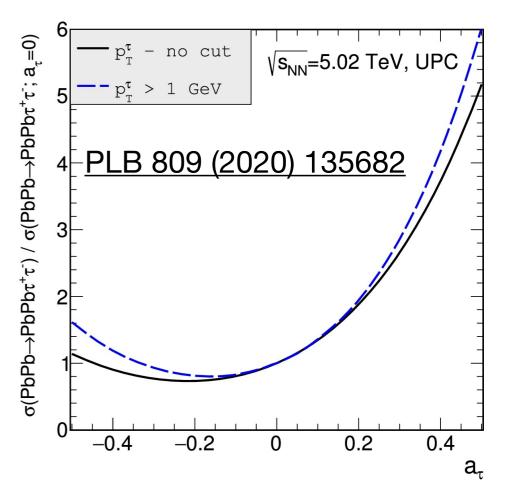

 Measurement of light-by-light scattering and search for axionlike particles with 2.2 nb⁻¹ of Pb+Pb data with the ATLAS detector: JHEP 03 (2021) 243


Other ATLAS measurements in UPC discussed by <u>Iwona</u>

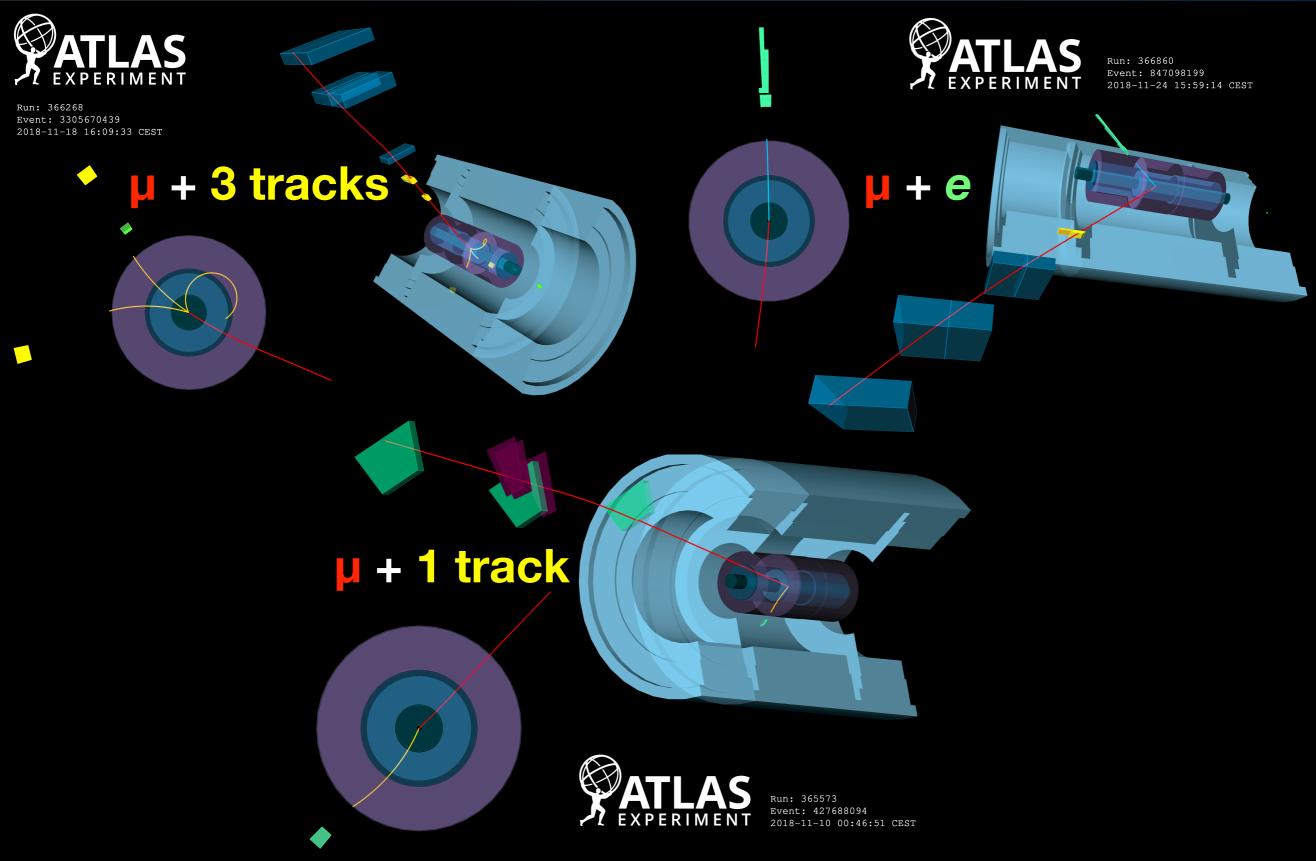
Motivation

- Constraints on τ-lepton anomalous magnetic moment
- Its value can be modified by various BSM phenomena (leptoquarks, lepton compositeness, SUSY, ...)

- New particles can enter the loop
- Modifications in LbyL crosssections might be induced by many BSM phenomena (Born-Infeld extensions of QED, spacetime non-commutativity in QED, extra spatial dimensions, ...)

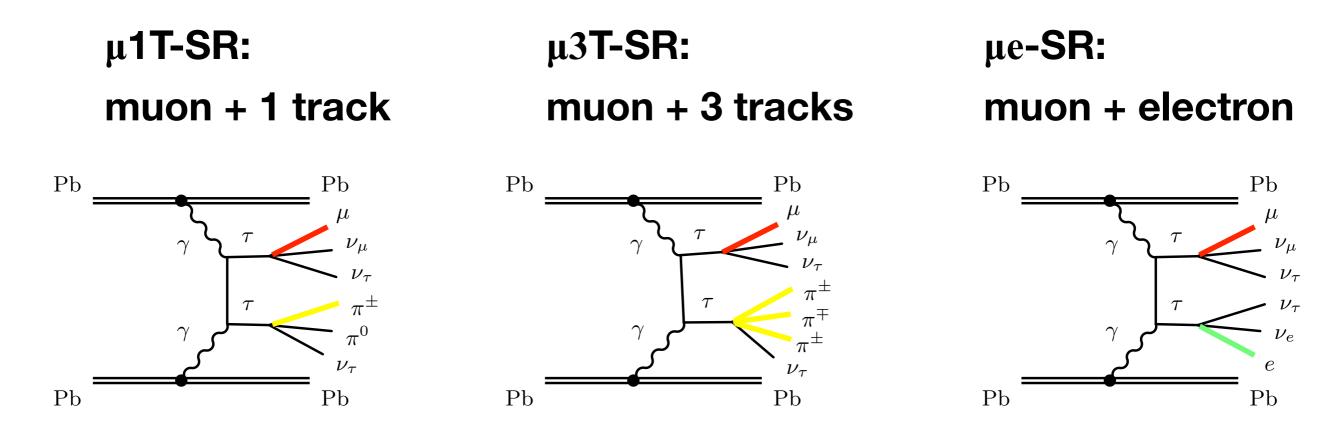

arXiv:2204.13478

A. Ogrodnik


BSM in PbPb UPC data in ATLAS

a_{τ} - measurement strategy

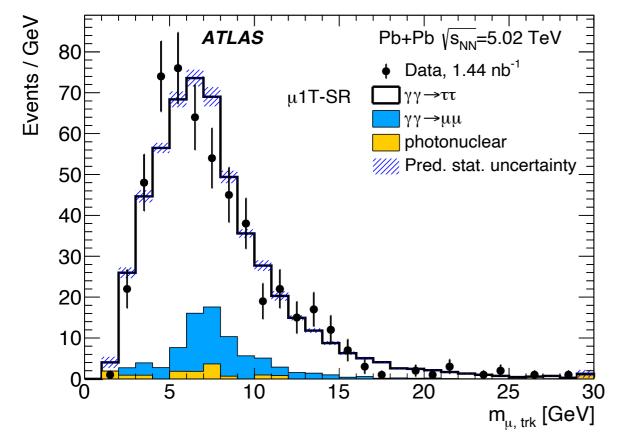
- Magnetic moment of the particle and its spin are related by g-factor: $\mu = g q/2m S$
- Dirac's equation predicts g=2 for charged leptons, higher-order corrections result in g≠2,
- These discrepancies are quantified by the lepton anomalous magnetic moments $a_{\ell} = (g-2)_{\ell}/2$
- Currently the best constraints for a_τ are from DELPHI experiment: -0.052<a_τ<0.013 (95% CL) EPJC 35 (2004) 159
- Measurement of a_τ in HI UPC collisions using γγ→ττ events proposed in several publications:
- F. del Águila, F. Cornet, J.I. Illana, <u>PLB 271 (1991) 256</u>
- L. Beresford, J. Liu, PRD 102 (2020) 113008
- M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, <u>PLB 809 (2020) 135682</u>

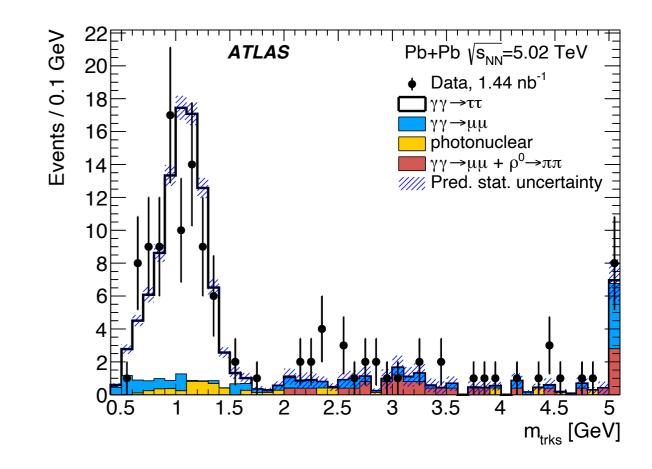


Ditau events

Signal categories

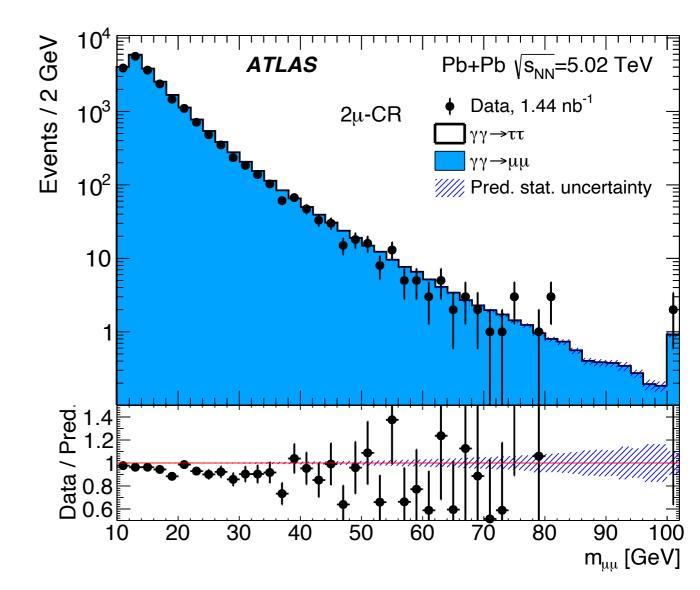
- First observation of $\gamma\gamma \rightarrow \tau\tau$ process in HI UPC using 1.44 nb⁻¹ of Pb+Pb data recorded by ATLAS in 2018
- Signal τ -leptons are low-energetic, typically with $p_T < 10$ GeV
 - No standard ATLAS identification of τ -leptons is used
- Events classified based on the charged τ -lepton decay products
- Three signal categories:



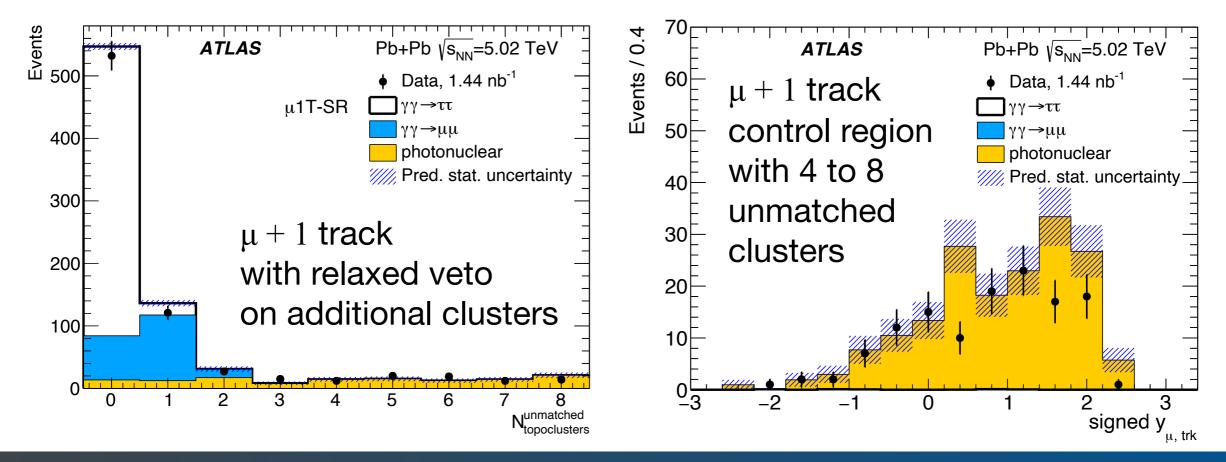

Ditau event selection

- Single muon trigger recording events having muon with $p_T > 4$ GeV
- Veto on forward neutron activity (based on ZDC signal) -> MC samples reweighed
- Kinematic selection:
 - muons: $p_T > 4$ GeV, $|\eta| < 2.4$
 - electrons: $p_T > 4$ GeV, $|\eta| < 2.47$
 - tracks: $p_{\rm T} > 100$ MeV, $|\eta| < 2.5$

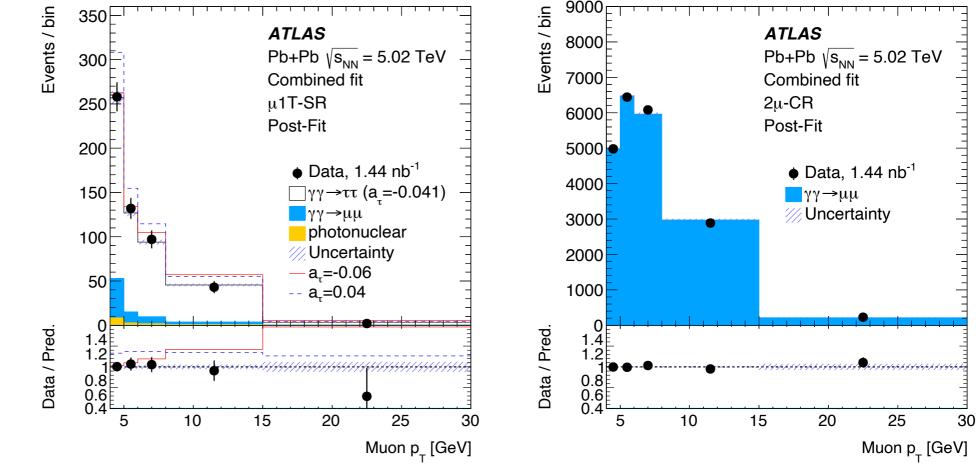
- veto on additional low-p_T clusters (for μ1T-SR and μ3T-SR) and low-p_T tracks
- For μ 1T-SR: $p_T^{\mu,trk} > 1 \text{ GeV}$
- For μ3T-SR: *m*_{3trks} < 1.7 GeV



arXiv:2204.13478

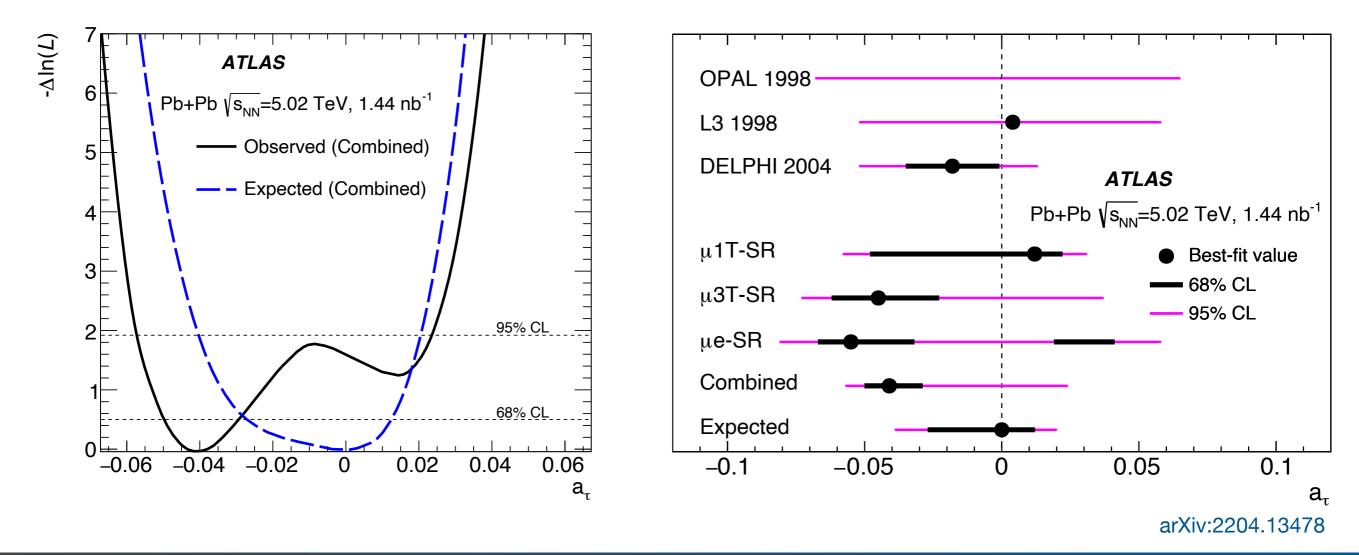

Backgrounds

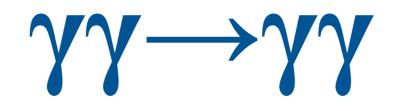
- Main background contributions from dimuon production and diffractive photonuclear interactions
- Background from γγ → μμ(γ) production estimated using MC simulation (STARLight+Pythia8, Madgraph5), constrained by a data CR
- Already pre-fit distributions in the 2µ-CR show good agreement of data and MC


Backgrounds

- Diffractive photonuclear present in µ1T-SR and µ3T-SR signal regions, estimated with data-driven technique
- Control regions defined with additional track with $p_T < 500$ MeV and allowing events from Xn0n category
- Event yields extrapolated from control to signal region by relaxing the veto on additional (unmatched) clusters from 0 to 8
- Normalisation done to the event yield in the region with 4 to 8 unmatched clusters

Observation of exclusive ditau production

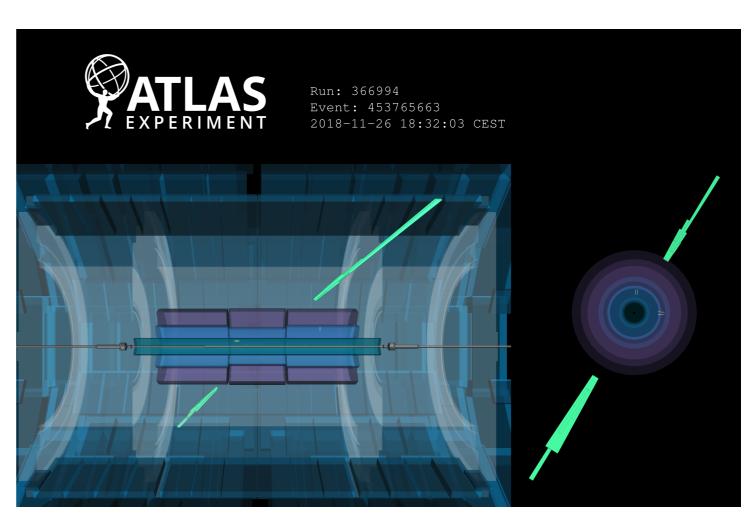

- The γγ → ττ signal strength and a_τ value is extracted using a profile likelihood fit using the muon p_T distribution
- Simultaneous fit combining all signal regions and dimuon control region
 - Dimuon control region ($\gamma\gamma \rightarrow \mu\mu$ events) used to reduce systematic uncertainty from the photon flux
- Calculations are based on the same parameterization as was used in previous LEP measurements
- Clear observation
 (≫ 5σ) of
 γγ → ττ process



arXiv:2204.13478

τ-lepton g-2

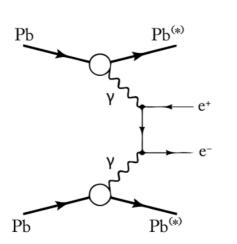
- Expected 95% CL limits from combined fit: $-0.039 < a_{\tau} < 0.020$
- The best fit value is $a_{\tau} = -0.041$, with the corresponding 95% CL interval being (-0.057, 0.024)
- The result is largely limited by statistics, what will improve with Run-3 data
- Constraints similar to DELPHI (EPJ C 35 (2004) 159)

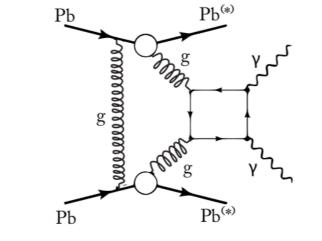

JHEP 03 (2021) 243

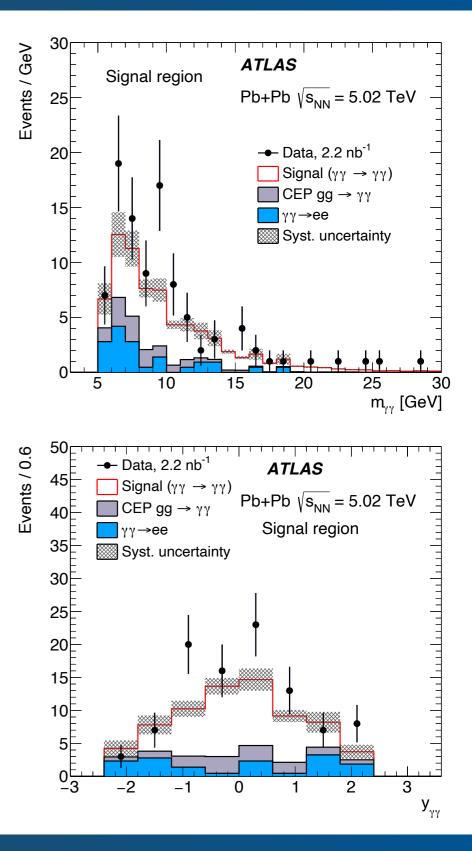
A. Ogrodnik

BSM in PbPb UPC data in ATLAS

Light-by-light scattering

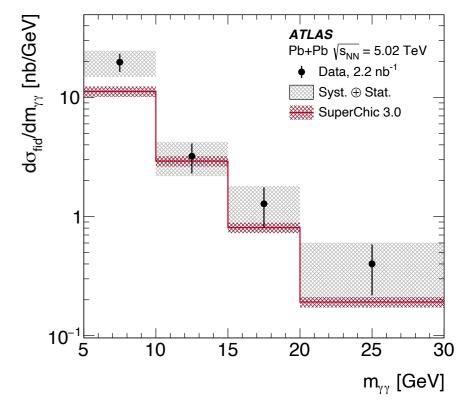

- Light-by-light (LbyL) scattering is a rare Quantum Electrodynamics (QED) process
- Several LbyL measurements done using Pb+Pb collision data at 5.02 TeV, collected by LHC experiments
- ATLAS: 2015: Nature Physics 13 (2017) 852, 2018: Phys. Rev. Lett. 123 (2019) 052001
 2015+2018: JHEP 03 (2021) 243
- CMS: 2015: Phys. Lett. B 797 (2019) 134826
- Signal selection:
 - Two photons with *E*_T > 2.5 GeV, identified with dedicated NN ID algorithm)
 - Diphoton mass above 5 GeV, low diphoton p_T, low diphoton acoplanarity: 1- |Δφ|/π < 0.01
 - Veto on any extra low-p_T tracks

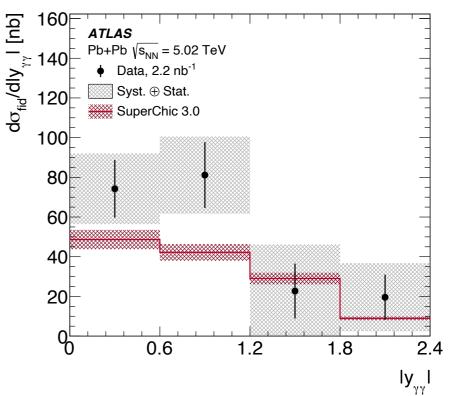



JHEP 03 (2021) 243

Backgrounds

- Various background sources considered, the largest contributions from:
 - Exclusive dielectron production $\gamma\gamma \rightarrow e+e$ -
 - Central Exclusive Production (CEP) $gg \rightarrow \gamma\gamma$
- Main background sources are estimated using data-driven techniques
- Shapes of the distributions are in good agreement but data excess visible in both distributions


A. Ogrodnik


JHEP 03 (2021) 243

Differential cross sections

- Cross-section is measured in a fiducial phase space, defined by the requirements reflecting event selection
- The measured integrated fiducial cross-section is
 σ_{fid} = 120 ± 17(stat.) ± 13(syst.) ±4 (lumi.) nb,
 while the predicted values are 80 ± 8 nb (Szczurek
 et al.) and 78 ± 8 nb (SuperChic3)
- Differential fiducial cross-sections are unfolded to particle level in the fiducial phase space to correct for bin migrations due to detector resolution effects
- The unfolded differential fiducial cross-sections are compared with the predictions from SuperChic v3.0
- No significant differences between predictions and data are seen

JHEP 03 (2021) 243

ALP limits

- Axion-like particles (ALP) are hypothetical particles that appear in many theories with a spontaneously broken global symmetry
- ALPs may **decay to two photons,** what might be visible as an excess in $m_{\gamma\gamma}$ distribution
- Simulated LbyL events are normalized to the data yield, after subtracting γγ → e⁺e⁻ and CEP gg → γγ contributions and excluding the mass search region
- ALP contribution is fitted individually for every mass bin
- No significant deviation from the background-only hypothesis is observed
- The result is used to estimate the upper limit on the ALP cross-section and ALP coupling 1/A_a at 95% confidence level
 JHEP 03 (2021) 243

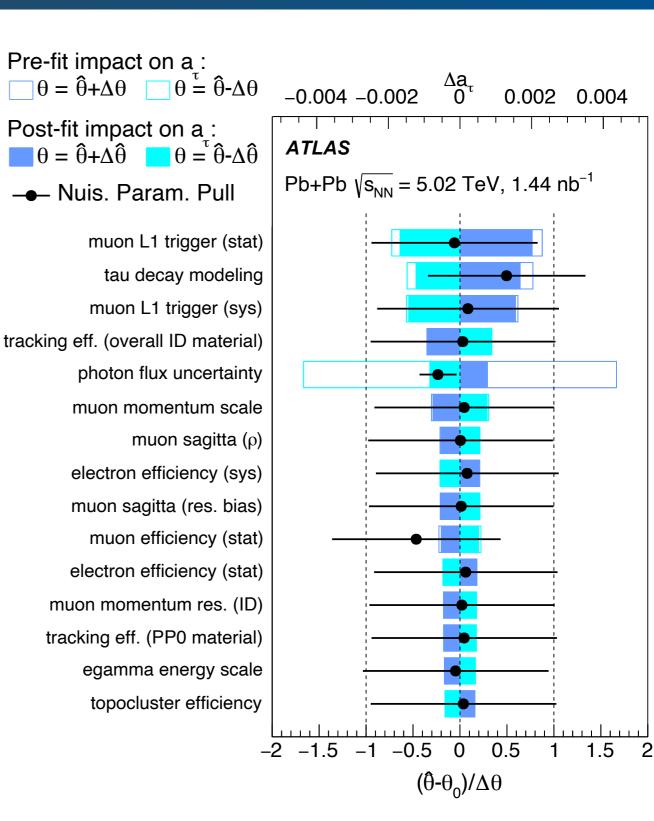
Existing constraints from JHEP 12 (2017) 044 ///_a [TeV⁻¹] CDF 10¹ LHC LEP $Y \rightarrow \gamma + inv$ (pp)Belle I 10⁰ $\rightarrow \gamma + inv.$ PrimĖx LEP CMS $\gamma \gamma \rightarrow \gamma \gamma$ [PLB 797 (2019) 134826] **ATLAS** 10^{-1} Beam-dump ATLAS $\gamma \gamma \rightarrow \gamma \gamma$ (this paper) 10³ 10⁻³ 10⁻² 10⁰ 10^{-1} 10¹ 10^{2} m_a [GeV]

Summary

- The $\gamma\gamma \rightarrow \tau\tau$ production was clearly observed by ATLAS in UPC Pb+Pb collisions
- The measurement of the *τ*-lepton anomalous magnetic moment is competitive with previous measurements
 - Improvement in precision expected with more data
- Light-by-light scattering was measured using data from Pb+Pb collisions at 5.02 TeV from 2015 and 2018 collected with the ATLAS detector
- Ratio of the measured cross-section to the SM predictions is 1.50 ± 0.32 (Szczurek et al.) and 1.54 ± 0.32 (SuperChic3)
- The **exclusion limits** for ALP cross-section and coupling were obtained for the mass range of $6 < m_a < 100$ GeV

ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter Large general-purpose detector • with almost 4π coverage • $\eta = -\ln(\tan(\theta/2))$ Inner detector $|\eta| < 2.5$ ulletMuon system $|\eta| < 2.7$ (trig. 2.4) • Calorimetry out to $|\eta| < 4.9$ ulletZero-Degree-Calorimeters ulletcapture neutral particles with *|η*|>8.3 Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker **Toroid Magnets** LUCID ALFA AFP ZDC ZDC AFP ALFA Q7 Q3Q2Q1 Q1Q2Q3 D2 Q4 Q5 **Q6** Q7 Q5 Q6 D1 Q4 D2 D1 interaction point 140 m 140 m -


BSM in PbPb UPC data in ATLAS

$\gamma\gamma \rightarrow \tau\tau$ cutflow in MC

Requirement	Number of $\gamma \gamma \rightarrow \tau \tau$ events	Requirement	Number of $\gamma \gamma \rightarrow \tau \tau$ events
Common selection		μ3T-SR	
$\sigma \times \mathcal{L}$	352611	$N_{\mu}^{\text{preselected}} = 1$	1023
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}}$	28399	$N_{\mu}^{\rm signal} = 1$	900
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}} \times w_{\text{SF}}$	35383	$N_e = 0$	867
Pass trigger	1840	$N_{\rm trk}$ (with $\Delta R_{\mu,\rm trk} > 0.1$) = 3	88.1
$E_{\text{ZDC}}^{A,C} < 1 \text{ TeV}$	1114	Zero unmatched clusters	85.2
μ 1T-SR	_	\sum charge = 0	84.1
-		$m_{\rm trks} < 1.7 { m ~GeV}$	83.4
$N_{\mu}^{\text{preselected}} = 1$ $N_{\mu}^{\text{signal}} = 1$	1023	$A^{\mu, \text{trks}}_{\phi} < 0.2$	83.3
$N_{\mu}^{\text{signal}} = 1$	900	ψ	
$N_e = 0$	867	μe -SR	
N_{trk} (with $\Delta R_{\mu,\text{trk}} > 0.1$) = 1	575	$N_{\mu}^{\rm signal} = 1$	958
Zero unmatched clusters	552	$N_e^{\mu} = 1$	33.9
\sum charge = 0	546	N_{trk} (with $\Delta R_{\mu/e,\text{trk}} > 0.1$) = 0	32.6
$p_{\rm T}^{\mu,{\rm trk}} > 1 {\rm ~GeV}$	503	\sum charge = 0	32.5
$p_{\rm T}^{\dot{\mu},{\rm trk},\gamma} > 1 \;{\rm GeV}$	482		
$p_{\rm T}^{\mu, {\rm trk, clust}} > 1 {\rm ~GeV}$	462		
$A^{\mu,\text{trk}}_{\phi} < 0.4$	459		

τ -lepton g–2, systematic uncertainties

- Approximately 80 nuisance parameters (statistical and systematic uncertainties) are included in the fit
- Many of them correlated between signal and control region
 - Using dimuon control region
 (γγ → μμ events) significantly
 reduced systematic
 uncertainty from the photon
 flux

Signal categories - ZDC selection

- Different processes present different activity in the forward region:
 - Exclusive dilepton production - ions stay intact
 - Background events with nuclear breakup

- ATLAS **0n0n** $PbPb(\gamma\gamma) \rightarrow \mu^+\mu^-(Pb^{(*)}Pb^{(*)})$ $p_{T,\mu} > 4 \text{ GeV}, \ \eta_{\mu} l < 2.4$ $m_{\mu\mu} > 10 \text{ GeV}, \ p_{T,\mu\mu} < 2 \text{ GeV}$ Xn0n Counts 10² -10 N 2 2 3 1 (2.51 TeV) EZDC+ E 2 ZDC. / (2.5, 3' TeV)
- The association between given ZDC signal and given process is nontrivial
 - Migrations due to ion excitation and presence of EM pile-up