

EXCITED HADRON CHANNELS IN HADRONIZATION

RAINER J FRIES

TEXAS A&M UNIVERSITY

WORK WITH M KORDELL, C M KO AND J PURCELL

Based on: M. Kordell, R. J. Fries, C. M. Ko, Annals Phys. 443 (2022) 168960

HADRONIZATION AND RESONANCES

- Renewed interest in Hadronization
 - New experimental information!
 - More realistic modeling?

- Here we suggest a modest but physically important improvement.
- Hadronic resonances play an important role in many aspects of heavy ion collisions. We expect this to be also the case for hadronization.
- Concretely, we study the inclusion of *meson* resonances into quark recombination.

HYBRID HADRONIZATION

- A hybrid of string fragmentation and recombination.
- Interpolates smoothly in between, two limits:
 - \circ Dilute systems \rightarrow Dominance of string fragmentation
 - \circ Dense systems \rightarrow Dominance of quark recombination

K. C. Han, R. J. Fries, C. M. Ko, Jet Fragmentation via Recombination of Parton Showers, Phys.Rev.C 93, 045207 (2016)

- Monte Carlo implementation available, e.g implemented in JETSCAPE since v2.0.
- Necessary ingredients: probabilities for coalescence of quarks based on their phase space coordinates.
- Need to compute the necessary probabilities for meson resonances.

SETTING UP THE PROBLEM

- Quarks/antiquarks = wave packets in phase space
- For simplicity: Gaussian wave packets around centroid phase space coordinates (\vec{r}_i, \vec{p}_i) , of given width δ . Color and spin information might be available (otherwise treated statistically).

• Short range interaction modeled by isotropic harmonic oscillator potential of width 1/v. • Use the Wigner formalism in phase space. We need angular momentum eigenstates.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

Wigner distribution in phase space for given wave functions ψ_1, ψ_2 :

$$W_{\psi_2,\psi_1}(\mathbf{r},\mathbf{q}) = \int \frac{d^3 \mathbf{r}'}{(2\pi\hbar)^3} e^{\frac{i}{\hbar}\mathbf{r}'\cdot\mathbf{q}} \psi_2^* \left(\mathbf{r} + \frac{1}{2}\mathbf{r}'\right) \psi_1 \left(\mathbf{r} - \frac{1}{2}\mathbf{r}'\right)$$

- (Diagonal) results known for the 3-D harmonic oscillator: S. Shlomo, M. Prakash, *Phase space distribution of an N dimensional harmonic oscillator*, Nucl. Phys. A 357,157 (1981); formally known but hard to use.
- In 2-D: R. Simon, G. S. Agarwal, *Wigner representation of Laguerre-Gaussian beams*, Opt. Lett. 25, 1313 (2000); results are in closed form and elegant!
- Recalculate Wigner distributions using an expansion of angular momentum eigenstates in products of 1D-states.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

• Use the well-studied 1D-phase space distributions to build the 3D ones

$$W_{kl}(\mathbf{r},\mathbf{q}) = \sum_{\substack{n_1,n_2,n_3\\n'_1,n'_2,n'_3}} D_{kl} \binom{n_1,n_2,n_3}{n'_1,n'_2,n'_3} W_{n'_1n_1}(r_1,q_1) W_{n'_2n_2}(r_2,q_2) W_{n'_3n_3}(r_3,q_3)$$

Radial quantum number k, angular momentum quantum number l

Averaging magnetic quantum numbers m, since not interested in polarization.

$$D_{kl}\binom{n_1, n_2, n_3}{n'_1, n'_2, n'_3} = \frac{1}{2l+1} \sum_m C^*_{klm, n'_1n'_2n'_3} C_{klm, n_1n_2n_3}$$

Three off-diagonal 1-D Wigner distributions

Expansion coefficients for angular momentum eigenstates in terms of products of 1-D states

 The off-diagonal 1-D Wigner distributions are known [T. Curtright, T. Uematsu, C. K. Zachos, J. Math. Phys. 42 (2001)]

$$W_{n'n}(x,q) = \frac{(-1)^{n'}}{\pi\hbar} \sqrt{\frac{n'}{n}} u^{\frac{n-n'}{2}} e^{-u/2} e^{-i(n-n')\zeta} L_{n'}^{(n-n')}(u)$$

$$u = 2(q^2/(\hbar^2\nu^2) + \nu^2x^2)$$

$$\tan\zeta = q/(\hbar\nu^2 x)$$

WIGNER DISTRIBUTIONS

- Recall that Wigner distributions can be 0 negative.
- When summed over m, they only depend 0 on magnitudes of position and momentum, and the relative angle θ between.

vr

Examples of a few lowest states \bigcirc

vr

COALESCENCE

Probability for coalescence of Gaussian wave packets using the Wigner distributions.

 $\tilde{\mathcal{P}}_{klm,\mathbf{P}_{f}} = (2\pi\hbar)^{6} \int d^{3}\mathbf{x}_{1} d^{3}\mathbf{x}_{2} d^{3}\mathbf{k}_{1} d^{3}\mathbf{k}_{2} \tilde{W}_{\mathbf{P}_{f}}(\mathbf{K}) W_{klm} \left(\Delta\mathbf{x},\Delta\mathbf{k}\right) W_{1}(\mathbf{x}_{1},\mathbf{k}_{1}) W_{2}(\mathbf{x}_{2},\mathbf{k}_{2})$

$$\mathcal{P}_{kl} = \sum_{m} \int d^3 \mathbf{P}_f \tilde{\mathcal{P}}_{klm,\mathbf{P}_f}$$

Wigner for center of mass motion.

Bound state Wigner distribution; only depends on relative phase space corrdinates Wigner distributions of two Gaussian wave packets.

- \circ Again sum over m, since we are not interested in polarization here (see remark later).
- Results discussed here for $1/\nu = 2\delta$ (relation between quark wave packet width δ and harmonic oscillator length scale $1/\nu$).

COALESCENCE PROBABILITIES

- Probabilities depend on the relative coordinates of the wave packet centroids, called r and q here.
- $\circ \theta$ = angle between r and q.

COALESCENCE PROBABILITIES

• Probabilities can be written in terms of just two variables: total phase space distance squared v and total angular momentum squared t.

$$v = \frac{\nu^2 r^2}{2} + \frac{p^2}{2\hbar^2 \nu^2},$$

$$t = \frac{1}{\hbar^2} \left[p^2 r^2 - (\mathbf{p} \cdot \mathbf{r})^2 \right] = \frac{1}{\hbar^2} L^2$$

- If summed over states with the same energy, the probabilities are simply Poissonian given by phase space distance
- $\sum_{2k+l=N} \mathcal{P}_{kl} = e^{-v} \frac{v^N}{N!}$

• Same as in 1-D

• Energy degeneracy broken by orbital angular momentum of the quarks. *t* makes an intuitive connection between the relative angular momentum of the incoming quarks and the quantum number *l* of their bound state.

 $\mathcal{P}_{00} = e^{-v} \,,$

 $\mathcal{P}_{01} = e^{-v} v \,,$

 $\mathcal{P}_{10} = \frac{1}{2}e^{-v} \left(\right.$

 $\mathcal{P}_{02} = \frac{1}{2}e^{-v}\left(\frac{2}{3}v^2 + \frac{1}{3}t\right)$

Both are states with N=3

10

EXCITED MESONS AND THEIR DECAYS

- We include excited mesons up to N = k + 2l = 4.
- Hybrid Hadronization uses PYTHIA 8 for decays: available excited states are limited, but the user can easily add more.
- Many more resonances in the PDG -> add
- Add as of yet unconfirmed bound states: extrapolate unknown properties.

Light/Strange n = 1 (k = 0)																
	L=0		L=1			L=2		L=3		L=4						
L=J S=0	I = 1	xx1	π	10xx3	$b_1(1235)$	10xx5 $1^{1}D_{2}$ 2^{-+}	$\pi_2(1670)$	$\begin{array}{c}) \\) \\) \\) \\) \\) \\ \end{array} \begin{array}{c} 10xx7 \\ 1^{1}F_{3} \\ 3^{+-} \end{array}$	$b_3(2013)^{\dagger}$	$-\frac{10xx9}{1^{1}G_{4}}$ $-\frac{4^{-+}}{4^{-+}}$	$\pi_4(2306)^{\dagger}$					
	$I = \frac{1}{2}$	$1^{1}S_{0}$	$ \begin{array}{c c} $	$1^{1}P_{1}$	K_{1B}		$K_2(1770)$		$K_{3B}(2157)^{\intercal}$		$K_{4B}(2485)^{\dagger}$					
	I = 0	0-+		1+-	$h_1(1415)$		$\eta_2(1870)$		$h_3(2234)^{\dagger}$		$\eta_4(2547)^{\dagger}$					
	I = 0	ľ í		1	$h_1(1170)$	-	$\eta_2(1645)$		$h'_{3}(2011)^{\dagger}$		$\eta'_4(2320)^{\dagger}$					
J=L+1 S=1	I = 1	vv3	$\rho(770)$	xx5 $1^{3}P_{2}$ 2^{++}	$a_2(1320)$	- xx7 $- 1^3D_3$ $- 3^{}$	$\rho_3(1690)$	xx9	$a_4(1970)$	$xx8^{\ddagger}$ $1^{3}G_{5}$ $5^{}$	$ \rho_5(2350) $		PDG states			
	$I = \frac{1}{2}$	$\begin{array}{c} XX3 \\ 1^3S_1 \\ 1^{} \\ \omega(7) \end{array}$	$K^{*}(892)$		$K_2^*(1430)$		$K_3^*(1780)$	$1^3 E$	$K_4^*(2045)$		$K_5^*(2380)$					
	I = 0		$\frac{\phi(1020)}{\omega(782)} 2^{+4}$		$f_2'(1525)$		$\phi_3(1850)$	4^{++}	$f_4(2300)$		$\phi_5(2584)^{\dagger}$					
	I = 0			2	$f_2(1270)$		$\omega_3(1670)$		$f_4(2050)$		$\omega_5(2323)^\dagger$					
J=L S=1	I = 1			20xx3	$a_1(1260)$	20225	$ \rho_2(1715)^{\dagger} $	-20xx7	$a_3(2072)^{\dagger}$	202220	$ \rho_4(2376)^{\dagger} $					
	$I = \frac{1}{2}$				K_{1A}	$1^3 D$	$K_2(1820)$		$K_{3A}(2160)^{\dagger}$	$\begin{bmatrix} 20XX9\\ 1^3C \end{bmatrix}$	$K_{4A}(2453)^{\dagger}$					
	I = 0			1 1 1 1 + +	$f_1(1420)$	$\begin{bmatrix} 1 & D_2 \\ 0^{} \end{bmatrix}$	$\phi_2(1835)^{\dagger}$	$\begin{bmatrix} 1 & 1^{-3} \\ 2^{++} \end{bmatrix}$	$f_3(2173)^{\dagger}$	$\begin{bmatrix} 1 & G_4 \\ 1 & \end{bmatrix}$	$\phi_4(2464)^{\dagger}$					
	I = 0			1	$f_1(1285)$		$\omega_2(1733)^{\dagger}$ 3]]	$f'_3(2087)^{\dagger}$	4	$\omega_4(2389)^{\dagger}$			and the second		
J=L-1 S=1	I = 1			10 yy 1 $a_0(1450)$ 30	20222	$\rho(1700)$ 20 mm 5	$a_2(1918)^{\dagger}$	20227	$\rho_3(2113)^{\dagger}$			onfirmed states				
	$I = \frac{1}{2}$				$1^{3} D$	$K_0^*(1430)$	1^{3} D.	$K^{*}(1680)$	$1^3 E$	$K_2^*(1897)^{\dagger}$	1^3C	$K_3^*(2092)^{\dagger}$				
	I = 0					$\begin{vmatrix} 1 & 1 & 0 \\ 0^{++} \end{vmatrix}$	$f_0(1710)$	$\begin{bmatrix} 1 & D_1 \\ 1 & - \end{bmatrix}$	$\phi_1(1931)^{\dagger}$	$\begin{bmatrix} 1 & \mathbf{\Gamma}_2 \\ 2^{++} \end{bmatrix}$	$f_2(2129)^{\dagger}$	$\begin{bmatrix} 1 & G_3 \\ 9^{} \end{bmatrix}$	$\phi_3(2310)^{\dagger}$			
	I = 0			0	$f_0(1370)$		$\omega(1650)$		$f_2'(1889)^{\dagger}$	ں ا	$\omega_{3}(2101)^{\dagger}$					

11

EXCITED MESONS AND THEIR DECAYS

• Use scaling laws for masses

$$M^2 = M_0^2 + \alpha k$$
$$M^2 = M_0^2 + \beta l ,$$

A. V. Anisovich, V. V. Anisovich,
A. V. Sarantsev,
Systematics of qqbar states in the (n,M²) and (J,M²) planes,
Phys. Rev. D 62, 051502 (2000)

 Decays from minimum set of assumptions: Flavor/OZI, G-parity, phase space weights (up to 5-particle decay) [R. H. Milburn, Rev. Mod. Phys. 27, 1 (1955)], isospin algebra

20qq7 (S=1,L=3)	1^3^F_3	3										
20217	a_3(207	2)+ a_3(2072)-		0.3121569535	pi+pi+pi-	211 211 -211	0.2081046356	pi+pi0pi0	211 111 111	0.1370660614 pi+pi+pi-pi-	211 211 211 -	
20117	a_3(207	2)0		0.4162092713	pi+pi0pi-	211 111 -211	0.1040523178	pi0pi0pi0	111 111 111	0.3015491729 pi+pi+pi0pi-pi-	211 211 111 -	
20327	K_3A(21	60)+ K_3A(2160)	-	0.02969148171	K+pi0	321 111	0.05938385418	K0pi+	311 211	0.1882397025 K+pi+pi-	321 211 -211	
20317	K_3A(21	60)0 K_3A(2160)	bar0	0.02969148171	K0pi0	311 111	0.05938385418	K+pi-	321 -211	0.1882397025 K0pi+pi-	311 211 -211	
20337	f_3(2173	3)		0.0473472313	pi+pi-	211 -211	0.02367326055	pi0pi0	111 111	0.3715918033 pi+pi+pi-pi-	211 211 -211	
20227	f 3'(208	7)		0.05917570104	pi+pi-	211 -211	0.0295874067	0i0pi0	111 111	0.3644947569 pi+pi+pi-pi-	211 211 -211	

FIRST TEST: ABUNDANCES OF RESONANCES

- Use parton states from running PYTHIA 8 e+e- at 91 GeV
- Hybrid Hadronization with N = 4, no decays;
- Spin treated statistically, color flow from PYTHIA.

Hadrons from recombination only

FIRST TEST: SPECTRA

- \circ e+e- at 91 GeV, N = 4, decays=on
- Left panel: N = 4 vs N = 0 means more recombination, less fragmentation

• Right panel: Competing mechanisms: increasing N increases low momentum decay products, also allows for more recombination at large x_e .

PREVIEW: POLARIZATION

- What if we don't sum over magnetic quantum numbers and ask for the polarization of the meson?
- Probabilities are sensitive to the angular momentum component L_z .
- Conclusion: if the collective motion of the quarks at carries net orbital angular momentum, hadronization can give you correspondingly polarized p- and dwave mesons.

$$P_{011} = e^{-v} \left(\frac{1}{2}v_T + \frac{1}{2}v_T\right)$$

$$P_{011} = e^{-\nu} \nu_L$$

L_z selects a preferred polarization of the meson

$$P_{01-1} = e^{-\nu} \left(\frac{1}{2} \nu_T - \frac{L_z}{2\hbar} \right)$$

 v_T , v_L : squared phase space distance perpendicular and parallel to the quantization axis.

SUMMARY

- We have laid the foundation to include excited meson states into the recombination formalism:
 - Coalescence probabilities for Gaussian wave packets have been calculated.
 - Excited meson lists have been assembled.
- First test in e^+e^- : *p* and *d*-wave mesons are important hadronization channels.
- Explore effects in systems beyond e⁺e⁻
- Adding baryons: tedious but doable
- Novel manifestation of polarization effects from orbital angular motion of quarks?

BACKUP

17

JETS IN HYBRID HADRONIZATION

- Decay gluons provisionally into qqbar pairs (gluons whose quarks don't recombine are later reformed)
- Go through all possible quark pairs/triplets, compute the recombination probability and sample it. Recombine the pair/triplet if successful.
- Rejected partons again form acceptable string systems (only color singlets removed!)

String Fragmentation

• Remnant strings are fragmented by PYTHIA 8.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

 Ψ_k

• Express angular momentum eigenstates through an expansion in products of 1D-states

Radial, orbital angular momentum and magnetic quantum nubmers

$$C_{lm}(\mathbf{r}) = \sum_{n_1 n_2 n_3} C_{klm, n_1 n_2 n_3} \Phi_{n_1 n_2 n_3}(\mathbf{r})$$

Three 1D-quantum numbers

• Tedious but straight forward, e.g. for k = 0:

$$C_{0lm,n_1n_2n_3} = \sqrt{\frac{(l+m)!(l-m)!}{2^{2l}n_1!n_2!n_3!(2k+2l-1)!!}} \ 2^{n_3}i^{n_2} \begin{pmatrix} n_2\\ \kappa \end{pmatrix} {}_2F_1(-\kappa,-n_1;1-\kappa+n_2;-1)$$

$$\kappa = \frac{1}{2} \left(l + m - n_3 \right)$$

• Two conditions for non-zero coefficients:

$$N \equiv n_1 + n_2 + n_3 = 2k + l$$

Condition for matching energy of states

$$l+m-n_3=0 \bmod 2$$

