Study of the Bose-Einstein correlations of identical pions in proton-lead collisions Mateusz Goncerz¹, Marcin Kucharczyk, Bartosz Małecki on behalf of the LHCb collaboration (Hard Probes 23, 28.03.2023) ¹mateusz.goncerz@cern.ch

Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

Motivation	Analysis
 Bose-Einstein Correlations (BEC) enhanced production of identical bosons with similar four-momenta emerges from symmetrization of two-particle wave funcion provides insight into the characteristics of the emitter proton-ion collisions probe early stages of its development LHCb detector unique pseudorapidity coverage at the LHC fully instrumented in the 2.0 < η < 5.0 range [1] results complementary to other experiments proton-proton collisions explored by a previous study [2] 	 two sub-samples constructed same-sign pion sample (SS) - BEC effect present opposite-sign pion sample (OS) - no BEC effect, similar background several criteria applied to ensure similar kinematic characteristics shape of background determined by a fit of C₂(Q) to the OS sample Q ranges containing resonances excluded from the fit additional scaling accounting for higher cluster contribution in the OS sample SS sample fitted using background parameters from previous step although a direct comparison is not meaningful, due to different effects at play, the figures below show the general shapes of the correlation
	at play, the figures below show the general shapes of the correlation

function in both samples for a low and high N_{VELO} multiplicity bins

Datasets

- fully data-driven approach
- ▶ single-PV minimum-bias events at $\sqrt{s_{NN}} = 5$ TeV
 - ► $1.06 \text{ nb}^{-1} \text{ pPb}$
 - ► 0.52 nb⁻¹ Pbp
- Addition of the vertex detector (N_{VELO})

		sample	e fraction [?
bin#	$N_{\rm VELO}$	pPb	Pbp
1	[5-10)	< 2	< 2
2	[10-15)	2	2
3	[15-20)	4	2
4	[20-25)	7	3
5	[25 - 30)	10	4
6	[30 - 35)	13	5
7	[35-40)	14	6
8	[40-45)	10	5
9	[45-50)	10	6
10	[50-55)	8	6
11	[55-60)	7	7
12	[60-65)	5	6
13	[65-80)	6	15
14	[80-90)	_	7

Results

- LHCb-PAPER-2023-002, CERN-THESIS-2021-302
- ► the correlation radius R and intercept parameter λ have been extracted from the SS fit and are shown below as functions of the N_{VELO} multiplicity

15	[90 - 100)	—	7
16	[100-115)	—	6
17	[115 - 140)	—	7
18	[140 - 180)	_	4

Correlation function

the study is performed in a variable measuring the absolute difference of emitted particles' four-momenta

 $Q = \sqrt{-(q_1 - q_2)^2}$

- > pure BEC effect can be expressed as $C_{2,\text{BEC}}\left(Q\right) = 1 + e^{-|RQ|^{\alpha_L}}$
 - with index of stability α_L fixed to unity for direct correspondence between the correlation radius R and the size of the emitter
- the full correlation function is $C_2(Q) = N \left[1 - \lambda + \lambda K(Q) \times \left(1 + e^{-|RQ|} \right) \right] \times \Omega(Q)$

with normalization constant N, the Gamov factor K(Q)accounting for Coulomb interactions, $\Omega(Q)$ describing the non-femtoscopic contributions (long-range correlations, mini-jets etc.) and λ being the intercept of the correlation function extrapolated to Q = 0 GeV

- their behaviour is consistent with observations of other experiments at LHC
- ► the linear dependence of R on the cube root of N_{VELO} is also compatible with the predictions based on the hydrodynamic models

the dominant source of systematic error is the treatment of background, mainly the scaling procedure

Acknowledgements

This study is supported by Narodowe Centrum Nauki (grant numbers 2013/11/B/ST2/03829 and 2018/29/N/ST2/01641) and the PLGrid infrastructure.

Ongoing studies

- using bins of k_T and rapidity
- using Pb-Pb sample
- using D meson decays

References

- LHCb Detector Performance.
 Int. J. Mod. Phys. A, 30(07):1530022, 2015.
- Bose-Einstein correlations of same-sign charged pions in the forward region in *pp* collisions at $\sqrt{s} = 7$ TeV. JHEP, 12:025, 2017.