ITS3: A truly cylindrical inner tracker for ALICE

Jory Sonneveld on behalf of the ALICE collaboration

× × UNIVERSITY

OF AMSTERDAM

Inner Tracker: 3 layers, 22-42 mm from IP, 0.36% X₀ Outer Tracker: 4 layers, 194-395 mm from IP, 1.1% X₀

ALICE inner tracking system 2 (ITS2): First monolithic active pixel sensors at LHC pixels of 27 μm x 29 μm

12.5 GPix 10 m² active area: largest pixel detector ever built!

taking data since September 2021

a residual de la d

ALICE Pb-Pb 5.36 TeV LHC22s period 18th November 2022 16:52:47.893

ETT.

Future upgrade of the ALICE inner tracking system

 $0.36\% X_0$ per layer

ITS2

24120 chips from 200 mm wafers Very low material budget! 0.05% X_o per layer

22 mm from IP

 18 mm from IP

 New beam pipe:

 16 mm radius, 500 μm Be,

 0.14% X₀

 ITS3

Stitched,

wafer-scale

sensors from

300 mm wafers

5

ITS3: three new, ultralight, truly cylindrical layers

- Replace current pixel detector inner layers with half-cylinders of bent, thin silicon
- Use stitched, wafer-scale sensors

ER1 pad wafer

Pad wafer in engineering run 1 (ER1) using stitching: 25.9 cm long sensor

- T^{S3} "engineering model 1" made or o vare -T^{S3} "engineering model 1" made or o vare -Stitching: • put design blocks together during processing of silicon
 - Can make chip larger than the field of view of the lithographic equipment

ALICE ITS3 for Run 4

Each half layer is one single pixel sensor!

Stitching and bending

Material: $X/X_0 \approx 0.05\%$

ITS2 (now): 0.36% (inner), 1.1% (outer)

- 6 half-layer sensors with 3-5 wafer-scale monolithic active pixel sensors (MAPS)
- Half layer sensor of size of 280 x 53.3 mm² in layer 0
- Thinned to 40-50 µm
- Mechanically held in place by carbon foam

Improved measurements with more precise vertexing and tracking

ITS3: more precise vertexing and tracking

Large improvement especially at low p_{τ}

Factor 2 improvement over all momenta

Strange beauty particles

- For studies of hadronisation in heavy ion collisions
- The Compact Muon Solenoid (CMS) Experiment made first measurement B⁰_S / B_{not S} in Pb Pb collisions vs pp collisions – with large uncertainties
- ALICE also measured this
- Both see an enhancement, but no significant observation
- Large improvement with ITS3
- ITS3 can extend measurement to lower p_T

This all thanks to a close proximity to IP and a very low material budget!

Where did all the material go?

Remove "unnecessary" material from ITS2

Testing the air cooling

measurement

system

Filter

Temperature

sensor

Velocity

sensor

• Setup commissioned

Flow

distributors

Mass

ow meters

Valves

Manifold

 Mechanical and thermal stability tests ongoing

Silicon flexibility and bending

Silicon flexibility and bending

Silicon flexibility and bending

First bending with *superALPIDEs*

8 9 10 11

23 24 25 26 27 28 29 30 31 32

38 39 40

36

- ALPIDE: ALICE Plxel DEtector used in ITS2
- 40 µm thick sensors
- Bent to a radius of 18 mm

Beam test studies with bent sensors

- Bending silicon wafers and functional ALPIDEs is now routine
- Full mock-up of the final ITS3: "µITS3" bent to ITS3 radii tested
- Spatial resolution uniform among different radii
- Efficiency and resolution consistent with flat ALPIDEs

Sensor R&D

Characterization of new 65 nm technology for ITS3

- Several submissions, prototype of final wafer-scale chip expected 2024
- Now investigating many different small prototypes from a multi-layer reticle to qualify 65 nm technology
- One such prototype is a digital pixel test structure that acts as a technology demonstrator
- Results published: <u>doi:10.48550/arXiv.2212.08621</u>

First chips bent to 18 mm radius and successfully tested with Fe-55 source

- 32 by 32 pixels with asynchronous digital readout
- $15 \times 15 \ \mu m^2$ pixels whose position is time encoded in the readout 20

Digital pixel test structure efficient after irradiation

- Operated at room temperature!
- 100% efficient after ITS3 fluence
- Sensor still operable at 99% efficiency at 20°C after $\Phi_{eq} = 10^{15} / \text{ cm}^2$

Digital pixel test structure efficient after irradiation

- Operated at room temperature!
- 100% efficient after ITS3 fluence
- Sensor still operable at 99% efficiency at 20°C after $\Phi_{eq} = 10^{15} / \text{ cm}^2$

doi:10.48550/arXiv.2212.08621

In-pixel detection efficiency after $\Phi_{eq} = 10^{15}$ / cm²

Efficiency loss as expected: occurs in corners far from collection electrode. No charge sharing.

Stitched sensor prototypes

Summary and outlook

- Installation of new inner layers for ALICE inner tracking system 3 (ITS3) for LHC Run 4 in 2028
- Aim for truly cylindrical wafer-scale monolithic active pixel sensors
- Silicon flexibility and bending proved with routine bending tests
- Full mockup of ITS3 efficient when bent to ITS3 target radii

- Sensor prototypes reach 100% detection efficiency at room temperature at ALICE ITS3 fluence requirement of $\Phi_{eq} = 10^{13} / \text{cm}^2$
- ALICE ITS3 fluence requirement of $\Phi_{eq} = 10^{13} / cm^2$ • Sensor still operable at room temperature after $\Phi_{eq} = 10^{15} / cm^2$
- First stitched sensors on their way and to be tested soon
- ITS3 R&D will pave the way to thin, low-power sensors that could be used in ALICE 3 (see talk by Alessandro Grelli in this session)

ITS3 is a successful R&D project that will enable a wealth of new precision 25 measurements.

Additional material

ITS3 geometry

Beampipe inner/outer radius (mm)		16.0/16.5	
IB Layer parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)	270	270	270
Pseudo-rapidity coverage ^a	± 2.5	±2.3	±2.0
Active area (cm^2)	305	408	508
Pixel sensors dimensions (mm ²)	280×56.5	280×75.5	280×94
Number of pixel sensors / layer		2	
Pixel size (μm^2)	$O(15 imes15)^b$		

- Highly sensitive to beauty-strange hadron production in quark gluon plasma
 Br(B⁰_s + D⁺_s + X) = (93 ± 25)%
 Higher background rejection resulting from improved track spatial resolution

Better reconstruction of short-lived hadrons in ITS3

- Short lifetime: $c\tau(\Lambda^+_{c}) \sim 59 \mu m$ twice smaller than D⁰ meson
- Decay tracks displaced O(10) μm from IP
- Significance of Λ_c in pion decay channel more than doubles in ITS3 for low momenta

Current inner tracking system ITS2 inner three layers

Air cooling

- Thermal and stability tests ongoing
- Development of models based on heating elements
- Placed in custom wind tunnel to study thermal and mechanical properties

Bending tests

- Breaking point goes moves to smaller bending radii for thinner integrated sensors
- Bending force scales with the thickness to the third power

Different process modifications

- Motivated by better charge collection
- Higher speed may serve for monolithic sensors with timing functionality that could be applied in ALICE3

Analog pixel test structure results

