

Heavy flavor physics at the sPHENIX experiment

Antonio Silva for the sPHENIX Collaboration March 28th, 2023 <u>antonio.sphenix@gmail.com</u>

sPHENIX

The conclusion of a 20+ years scientific journey

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

2015 US NP LRP

- sPHENIX is the first new detector at any hadron collider in over a decade!
 - A compact detector with unique, purpose-built capabilities never before deployed at RHIC
- Different initial conditions and evolution for QGP at RHIC and LHC
 - Study of scale and temperature dependence

Heavy-flavor physics program

PROBES

The sPHENIX detector

The sPHENIX detector - calorimeters

MinBIAS

- First hadronic calorimeter at midrapidity at RHIC
- $|\eta| < 1.1$, full azimuthal coverage \rightarrow HF-jets
- Hadron $\Delta E/E \sim 14\% + 65\%/\sqrt{E}$

6 meters

- EM-shower tail catcher
- Mechanical support for EMCal

sEPD

Magnet

oHCAL

Antonio Silva

The sPHENIX detector - calorimeters

EMCal: Scintillator fiber tungsten sampling calorimeter

- $|\eta| < 1.1$, full azimuthal coverage
- Identification of electrons from heavy-flavor decays
- Towers with ~0.025x0.025 in $\eta x \phi$
- EM ΔE/E ~5% + 16%/√E

Antonio Silva

The sPHENIX detector - tracking

Time-projection chamber (TPC)

- Ungated continuous readout
- Reconstruction of heavy-flavor decay hadrons
- 150 µm rø resolution
- $\Delta p/p \sim 1\%$ at 5 GeV/c charged particles
- TPC outer tracker (TPOT) used for calibrations

RHIC run plan 2023-2025

Year	Beam	√s _{NN} (GeV)	Cryo Weeks	Physics Weeks	ℒ _{samp} (z <10cm)
2023	Au+Au	200	24	9	4.5 nb⁻¹
2024	p+p	200	24	12	45 pb ⁻¹
	p+Au	200	-	5	0.11 pb ⁻¹
2025	Au+Au	200	24	20.5	21 nb ⁻¹

- Year 1: Commissioning, calibration and first physics
- Year 2: Cold QCD and heavy-ion reference
- Year 3: Large Au+Au dataset

... and ready for more.

"The PAC urges BNL Management and the DOE to do everything possible to ensure sufficient beamtime to accomplish the physics goals in Runs 23, 24, 25 set out for sPHENIX in the 2015 NSAC Long Range Plan."

PAC Meeting June 2022: <u>https://indico.bnl.gov/event/15148/</u> PAC Recommendations: <u>https://www.bnl.gov/npp/docs/2022-npp-pac-recommendations-final.pdf</u>

sPHENIX Beam Use Proposal

Tracking resolution

Quarkonium

- Centrality- and p_{T} -differential R_{AA} measurements
- Clear distinction of three Upsilon states
 - Probing the QGP with color dipoles at three length scales
- Kinematic range allows for comparison between RHIC and LHC measurements

Open heavy flavour: DCA resolution

- Separation of prompt and non-prompt D⁰
 - Proxy for B mesons

Open heavy flavour measurements

- Study of heavy-flavor energy loss (R_{AA})
 - Interplay between collisional and radiative energy loss
- Study of collective effects (v_2)
 - Access to the bottom quark collectivity
- High precision measurements → deeper understanding of the interaction mechanisms between
 A heavy-quarks and the QPG

HF flow, baryons, and spin asymmetry

14

Heavy-flavor jets: D-tagged jets

- Jets reconstructed with a D meson as one of the constituents
 - \circ Full jet reconstruction \rightarrow tracking + calorimeters
 - Strong rejection of combinatorial jets at low momentum
- Wide range of jet structure measurements
- Interesting comparison to b-jets and inclusive jets

Heavy-flavor jets: b-jets

SPHEN

Summary

- sPHENIX will have all the subsystems ready for data taking
 - First collisions in a couple of weeks!
- The conclusion of a scientific mission to probe the inner workings of the QGP and resolving its properties
 - Heavy flavor is an important part of this mission
- Unique capabilities to probe the QGP at distinct length and mass scales at RHIC
 - \circ Y(2S) and Y(3S) measurements at RHIC
- Open heavy flavor and heavy-flavor jet physics programs
 - Precision tracking
 - Including hadrons originating from b quarks
 - Full jet reconstruction
 - b-jets and HF-hadron tagged jets

SPHEN

Backup slides

Potential 2 more years run 2026-2027

Year	Beam	√s _{NN} (GeV)	Cryo Weeks	Physics Weeks	ℒ _{samp} (z <10cm)
2026	p+p	200	28	15.5	80 pb⁻¹
	0+0	200	-	2	37 nb⁻¹
	Ar+Ar	200	-	2	12 nb⁻¹
2027	Au+Au	200	28	24.5	30 nb⁻¹

Quarkonium measurements

Y(1S), Y(2S) and Y(3S) R_{AA} as a function of centrality

• Comparison to LHC measurements

Antonio Silva