Enhancing the CERN LHC small systems program with bowling-pin-shaped neon isotopes

Giuliano Giacalone
Institut für Theoretische Physik (ITP)
Universität Heidelberg

March 29, 2023

The physical world as an emergent phenomenon.

Hydrodynamics: a prime example.

$$
F=-\nabla P
$$

FRONTIERS:

Mesoscopic regime: small systems and few particles.

[Brandstetter et al. (PI Heidelberg),
Emergent fluid behavior with a handful cold atoms]

Small collision systems provide a unique window onto this physics.
Persistent collective phenomena: femtoscale, few hadrons, out of equilibrium.

Understanding small systems: great challenge in strong-interaction physics.
How to make progress?

We need observations that we understand irrespective of model details.

Powerful method:

Look for model-independent correlation between final-state anisotropy and initial-state geometry.

PROBING THE GEOMETRIC ORIGIN OF FLOW

Attempt \#1 - Use p-A as a baseline. Geometry scan realized at RHIC for this purpose.
[PHENIX Collaboration, Nature Phys. 15 (2019) 3, 214-220]
[STAR collaboration, arXiv:2210.11352]

Clear interpretation from deuteron geometry.

Cons:

Effects of longitudinal de-correlation. Not well understood in initial-state models.

The baseline involves protons. Uncertain proton structure modeling.

PROBING THE GEOMETRIC ORIGIN OF FLOW

Attempt \#2 - Use O-O as a baseline. Central O+O vs. peripheral Pb+Pb.
[Schenke, Shen, Tribedy, PRC 102 (2020) 4, 044905]
Looks very solid.
No protons in the baseline.

Cons:
Longitudinal structure is different?

$$
r_{n \mid n}(\eta)=\frac{\left\langle\boldsymbol{q}_{n}(-\eta) \boldsymbol{q}_{n}^{*}\left(\eta_{\mathrm{ref}}\right)\right\rangle}{\left\langle\boldsymbol{q}_{n}(\eta) \boldsymbol{q}_{n}^{*}\left(\eta_{\mathrm{ref}}\right)\right\rangle}
$$

PROBING THE GEOMETRIC ORIGIN OF FLOW

Attempt \#3 - Use O-O as a baseline + collisions of an additional light ion.

Case enabled by extreme geometry of nucleus ${ }^{20} \mathrm{Ne}$.
Elongated bowling-pin shape with a well-separated cluster.

Nucleus has been been subject of extensive study. Consistent results across nuclear models.
[Marevic et al., PRC 97 (2018) 2, 024334] [Zhou et al., PLB 753 (2016) 227-231]

NEXT SLIDES: CASES UNDER INVESTIGATION

- Robust predictions for flow in hydrodynamics.
- Hard probe energy loss and thermalization.
- Beam energy dependence and longitudinal structure of initial state.
- Initial-state effects in ultra-peripheral collisions.

Hydro or not?

O-O collisions at the crossroads.

[Ambrus, Schlichting, Werthmann, arXiv:2211.14356]
[Ambrus, Schlichting, Werthmann, arXiv:2211.14379]

> Clear prediction: $\mathrm{v} 2^{[\mathrm{O}+\mathrm{O}]=\underline{\mathbf{0 . 8}} \mathrm{v} 2[\mathrm{Ne}+\mathrm{Ne}]}$

Bands are systematical uncertainties ($\eta / \mathrm{s}, \zeta / \mathrm{s}, \ldots$)
Systematical uncertainty on ratio at \% level!

Unambiguous "geometric" interpretation.
Very robust information.
[Bally et al., in preparation]

Evidence of jet modification is missing in p-Pb collisions. [e.g. ATLAS Collaboration, arXiv:2206:01138]
O-O as a promising avenue, due to better controlled geometry.

Possibility of observing path-length dependent effects. Ne-Ne vs. O-O ?

[Beattie et al., PLB 836 (2023) 137596]
[Beattie, QM22, arXiv:2210.02937]

Eccentricity with q2 selection. Slope is higher for $\mathrm{Ne}-\mathrm{Ne}$.
Effective alignment of bowling pins.
Good case for path-length studies. Gives us something we can play with.

Evidence of "thermalized" charm from elliptic flow.

Small systems?

Some observations also in p-Pb. Hard to interpret.
[CMS Collaboration, PLB 791 (2019) 172-194]

Insights from O-O? Introduce a time scale for charm thermalization.
[Capellino et al., PRD 106 (2022) 3, 034021]

Any observation of v 2 of D or J / ψ in $\mathrm{O}-\mathrm{O}$ is highly nontrivial.
v2 [O-O] < v2 [Ne-Ne], hint at potential "thermalized" origin. Charm attractor?

Synergy with SMOG system @ LHCb detector.

[Giacalone, Mehrabpour, in preparation]
[LHCb Collaboration, JINST 17 (2022) 05, P05009]

All these configurations would become available.

Comprehensive program is possible.

Unique window onto signatures of non-linear QCD evolution.

[Schenke, Schlichting, Singh, PRD 105 (2022) 9, 094023]
Melting the bowling pin with small-x gluons.

10% reduction of initial anisotropies due to JIMWLK evolution.
Should be visible. Calculation of baseline $\mathrm{O}-\mathrm{O}$ is ongoing.

Multi-scale imaging of nuclei in UPCs.

THE PROCESS:

Diffractive incoherent J / Ψ production.
$\left.\frac{\mathrm{d} \sigma^{\gamma^{*}+A \rightarrow V+A^{*}}}{\mathrm{~d}|t|}=\frac{1}{16 \pi}\left[\left.\langle | \mathcal{A}\right|^{2}\right\rangle-|\langle\mathcal{A}\rangle|^{2}\right]$

In small-x framework, scattering amplitude knows about the target gluon density, $\mathbf{t}(\mathbf{b})$:

$$
\mathcal{A}^{\gamma^{*} p \rightarrow V p} \sim \int \mathrm{~d}^{2} b \mathrm{~d} z \mathrm{~d}^{2} r \Psi^{\gamma *} \Psi^{V}\left(r, z, Q^{2}\right) \mathbf{e}^{-\mathrm{ib} \cdot \Delta} N(r, x, b) \downarrow t(\mathrm{~b})
$$

PHYSICAL REVIEW C 81, 025203 (2010)
Investigating the gluonic structure of nuclei via J / ψ scattering
A. Caldwell ${ }^{1}$ and H. Kowalski ${ }^{2, *}$
${ }^{1}$ Max Planck Institute for Physics, München, Germany
${ }^{2}$ Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany (Received 23 September 2009; published 23 February 2010)
$\left.\left.\frac{d \sigma^{\gamma A \rightarrow V A}}{d|t|} \propto\langle | \mathcal{A}\right|^{2}\right\rangle-|\langle\mathcal{A}\rangle|^{2} \propto \int d^{2} \mathbf{b}\left[\underline{\left\langle t_{A}\left(\mathbf{b}_{1}\right) t_{A}\left(\mathbf{b}_{2}\right)\right\rangle-\left\langle t_{A}\left(\mathbf{b}_{1}\right)\right\rangle\left\langle t_{A}\left(\mathbf{b}_{2}\right)\right\rangle}\right] e^{-i \boldsymbol{\Delta} \cdot\left(\mathbf{b}_{1}-\mathbf{b}_{\mathbf{2}}\right)}$

Sensitive to two-body correlations (i.e. deformation) in target nuclei.
[H. Mäntysaari et al., arXiv:2303.04866]

In fact, same correlation functions driving fluctuations of elliptic flow.

Towards a unified picture.

SUMMARY

- Emergent collective behavior observed at LHC down to femtoscale.
- Exploiting the geometry of ${ }^{20} \mathrm{Ne}$ for robust understanding of phenomena.
- Dramatic extension of science program envisaged via O+O collisions.

PROSPECTS

- Many results are coming. Further ideas are welcome! Please contribute.
- Idea brought forward to machine people @ LHC: no difficulties expected from preparation of ${ }^{20} \mathrm{Ne}$ beams.
- For a run in 2025, case to be made this year. Requires strong endorsement.

