Search for azimuthal anisotropy in yp interactions within ultra-peripheral pPb

collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

Subash Chandra Behera for the CMS Collaboration

Indian Institute of Technology Madras

11th International Conference on Hard and Electromagnetic probes of High-Energy Nuclear Collisions

26-31 March 2023, Aschaffenburg

Introduction

CMS detector

- Selection requirement
- \blacksquare Correlation functions in γp interaction

Results

Long range near-side ridge structure

✓ Appearance in two-particle charged-hadron correlations

Discovery: collectivity in small system

✓ Observed collectivity in small collision system (pPb and pp) for high multiplicity events.

- 1. What is origin of collectivity is small systems?
- 2. Does the collectivity observed in all collision system have a common source of origin?

Further going down in system size

γp interaction in ultra-peripheral collisions

✓ Relativistic nuclei interact electromagnetically by physically missing each other.

Why CMS Detector?

- Good precision
- Large rapidity coverage

Selection requirement

 $b > > R_{pA}$

Pb going-side

- ✓ No neutron detected by ZDC (Pb nucleus is not dissociate)
- \checkmark No activity in Pb side using particle flow and tracks (rapidity gap)

p going-side

✓ HF ensures the tower energy at least > 10 GeV

Track selections requirement

- ✓ Significance of z separation : $d_z/\sigma(z) < 3$
- ✓ Impact parameter significance : $d_0/\sigma(0) < 3$
- ✓ Momentum uncertainty: $\sigma(p_T)/p_T < 0.1$

Kinematic selections: $|\eta| < 2.4$ and $p_{\rm T} > 0.4$ GeV

Track multiplicity distribution in γp interaction

✓ N_{trk} distribution from the γ p-enhanced and MB data samples along with simulations from the PYTHIA8 and HIJING event generators.

✓ Three N_{trk} bins are used to analyze the γ p-enhanced events: $2 < N_{trk} < 5, 5 < N_{trk} < 10, 10 < N_{trk} < 35.$

arXiv:2204.13486v1 Submitted to PLB

Two-particle correlation

Hard and Electromagnetic Probes

Two-particle correlation in γp interactions

✓ No ridge like structure is observed in minimum-bias pPb and γp enhanced system.

<u>arXiv:2204.13486v1</u>

Submitted to PLB

Fourier decomposition

✓ The Fourier coefficient $V_{n\Delta}$ is estimated from the decomposition fit ✓ Azimuthal distribution is calculated for $|\Delta \eta| > 2.0$

✓ Fourier fit explained data well upto third order coefficient.

<u>arXiv:2204.13486v1</u>

Submitted to PLB

Fourier coefficient: $V_{n\Delta}$

✓ The $V_{2\Delta}$ coefficient is positive while $V_{1\Delta}$ is negative suggesting a strong effect of jet-like correlations.

✓ The predictions of $V_{2\Delta}$ and $V_{3\Delta}$ from PYTHIA8 are reasonably consistent with data.

✓ The $V_{1\Delta}$ prediction is smaller in magnitude than the measured values for the low p_{T} .

<u>arXiv:2204.13486v1</u>

Submitted to PLB

Fourier coefficient *v*₂

✓ The single-particle azimuthal anisotropy Fourier coefficients extracted as $v_n = \sqrt{V_{n\Delta}}$

✓ The flow coefficient v_2 increases with p_T and larger for γp .

✓ Predictions from the models describe well the γp and pPb MB data at low p_{T} .

✓ Models prediction suggest the absence of collectivity in the γp system over the multiplicity range explored in this work. arXiv:2204.13486v1 Submitted to PLB

Summary

18

N_{trk}

 \checkmark The long-range two particle correlations has been extended to photon-proton (γp) interactions first time in CMS. Similarities studies over electron-proton system.

 \checkmark The γp data are consistent with model predictions that have no collective within the sensitivity of the measurement effects thus suggesting the absence of collectivity in the γp system over the multiplicity range explored in this work.

Thank you!