MINIJET QUENCHING IN A CONCURRENT JET+HYDRO EVOLUTION AND THE NONEQUILIBRIUM QUARK-GLUON PLASMA

In collaboration with D. Pablos, M. Singh, and S. Jeon Based on Phys. Rev. C **106** (2022) 3, 034901

Charles Gale McGill University

Relativistic nuclear collisions: The "standard picture"

$$T^{\mu\nu}_{\text{IP-Glasma}}(0^+) \rightarrow \left[+ \text{ pre }-\text{hydrodynamization}\right] \rightarrow T^{\mu\nu}_{\text{hydro}}(\tau_0) \rightarrow T^{\mu\nu}_{\text{UrQMD/SMASH}}(\tau_{\text{CF}})$$

0^+ 0.1	0.4).8	→ T	
IP-Glasma		Hydrodynamics	Transport	$n \leq 0$
IP-Glasma	KoMPoST	Hydrodynamics	Transport	P Glasma $\gtrsim \mathcal{Q}_s$
				2
Gale	e, Paquet, So	chenke, Shen, PRC (20	22)	Charles Ga

2 Charles Gale

McGill

At high enough energies, the wave function will contain harder partons from initial collisions

- Perturbative process
- Production probability proportional to N_{coll}
- Partons can split & shower
- Random orientation in transverse plane & rapidity
 - Minijets are additional sources of fluctuation
- Minijet multiplicity is a rapidly-varying function of energy and minimum transverse momentum

Details of the initial state

• Physics at low x described by CGC effective theory, IP-Glasma, governed by scale Q_s

• Harder QCD processes, i.e. minijet production decoupled from the physics of the condensate: $p_{\min}^J > Q_s$

 $p < Q_s$: IP-Glasma

Schenke, Tribedy, and Venugopalan, PRL (2012) Schenke, Jeon, and Gale PRL (2011)

$$S_{\rm CGC} = \int d^4 x \left(-\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu\,a} + J^{\mu a} A^a_\mu \right)$$

$$Q_s^2 \sim A^{1/3} x^{-\lambda}$$

 $\left[D_{\mu}, F^{\mu\nu} \right] = J^{\nu} \ \, \mbox{Solved and evolved} \ \, \mbox{on the lattice} \ \, \mbox{}$

$$T_{\rm IP-Glasma}^{\mu\nu}(\tau_0) = T_{\rm hydro}^{\mu\nu}(\tau_0)$$

Next link in the chain of the soft dynamics: the hydro

- MUSIC: 2nd order in flow gradients
- With viscous evolution: shear η and bulk ζ

 $\eta/s = 0.135$

McDonald et al., PRC (2017)

Heffernan, Gale, Jeon, Paquet, arXiv: 2302.09478

 Bernhard, Moreland, Bass, Nature (2019); Everett et al. (JETSCAPE), PRL (2021); Nijs, van der Schee, PRL (2021)

Minijets ↔hydro Concurrent evolution workflow

- (Soft) initial state from IP-Glasma
- Finite minijet production probability at each binary collision (consider all QCD processes involving light partons)
- o Hydro $T_0^{\mu\nu}$ from IP-Glasma at $\tau_0=0.4$ fm/c
- Minijets lose energy (hybrid model) after au_0 and above T_c
- Gaussian sources into hydro
- Cooper-Frye freeze-out
- Hadronize non-stopped partons using Lund string model
 - Parton close to hypersurface, sample thermal parton to form colourless string
 - If away from HS, construct colourless string from "corona" partons
- Evolve hadrons with UrQMD

Similar in spirit:

- EKRT: Eskola, Kajantie, Ruuskanen, Tuominen NPB (2000)
- Tachibana et al. (JETSCAPE), QM 2022
- Yan, Jeon, Gale, PRC (2018)
- Kanakubo, Tachibana, Hirano, PRC (2020)
- Ke, Wang, JHEP (2021)

Stopping distance of a parton jet

______With minijets, no single hydrodynamization time

Jet influence on the hydro (What this talk is really about)

Modified hydro evolution

Isotherms: 220 MeV (red), 195 MeV (yellow), 170 MeV (green), 145 MeV (blue)

Charles Gale McGill

10

Effect on more differential observables (1)

11

McGill

Effect on more differential observables (2)

Comparison of two calculations
With jets (and rescaled η/s)
Without jets
The two approaches track well

over a large multiplicity window
Main effect of minijets is to rescale transport coefficient

Effect on more differential observables (2)

Comparison of two calculations

- With jets (and rescaled η/s)
- Without jets
- The two approaches track well over a large multiplicity window
- Main effect of minijets is to rescale transport coefficient

Effect on more differential observables (2)

Comparison of two calculations

- With jets (and rescaled η/s)
- Without jets
- The two approaches track well over a large multiplicity window
- Main effect of minijets is to

Inside the hydro (1)

13

McGill

Effect on transverse velocity

PROBES

Inside the hydro (2)

$p_{\min}^{ m J}$	$\langle N_{ m frag.}/N_{ m total} angle_{0-5\%}$	$\langle N_{ m frag.}/N_{ m total} angle_{40-50\%}$
$4 { m GeV}$	0.077(1)	0.252(3)
$7~{ m GeV}$	0.0125(5)	0.033(2)
$10 { m GeV}$	0.0042(3)	0.014(2)

- # of hadrons coming from nonstopped partons w.r.t total hadrons at particlization time
- Increases with centrality; partons are more likely to escape

 Fraction of energy frozen out of the 145 MeV hypersurface as a function of proper time for the 30-40% centrality bin

Inside the hydro (3)

Injection of minijets has an important effect on the viscosity (mainly because of the rescaling)

15 Charles Gale McGill

Conclusions and outlook

- Minijets affect soft observables and influence strongly extraction of transport parameters; all aspects of hydro evolution are touched
- Improve model: include the interval between minijet creation and fluid-dynamical initialization Ipp et al., PLB (2020); Carrington et al., PRC (2022)
- Analysis with differential observables and correlations (e.g. $\rho(v_2^2, [p_T])$, event plane correlations,...)
- Way forward: include pre-hydro components like this one in Global Bayesian analyses
- EM probes will be sensitive to the modified fluid-dynamical environment **and** to minijet conversions

Inside the hydro (3)

Little changes to bulk viscosity: no rescaling

