Universality of energy-momentum response in conformal kinetic theories

Hard Probes 2023, Aschaffenburg, Germany, March. 29, 2023

Xiaojian Du

In collaboration with Stephan Ochsenfeld, Sören Schlichting

Aschaffenburg

Hydrodynamics

Hydrodynamic theory

Macroscopic theory at long wave-length, low frequency limit

 $kl_{mfp} < 1, \qquad \omega t_{mfp} < 1$

Constructed as an order expansion of gradients close to equilibrium

 $\langle T^{\mu\nu} \rangle = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)}(\nabla) + T^{\mu\nu}_{(2)}(\nabla^2) + \cdots$

Ideal hydro Viscous hydro

Hydrodynamic modes

small gradients $\nabla \sim k$ small

vanishing frequency $\omega(k \rightarrow 0) = 0$

Hydrodynamics in relativistic heavy-ion collisions (HICs)

Successful description of near-equilibrium guark-gluon plasma (QGP)

- Medium background for hard probes (jets, heavy guarks, guarkonium, etc..)
- Energy deposition to medium from hard probes as well

Non-hydrodynamics

Kinetic theory

Non-equilibrium dynamics beyond hydrodynamics in HICs

- Equilibration of jets in near-equilibrium QGP
 Drease uilibrium stage of LUCs
- Pre-equilibrium stage of HICs

•	Kinetic theory	Viscous hydro	Ideal hydro	
	non-equilibrium	near-equilibrium	equilibrium	

Non-hydrodynamic modes: anything not hydrodynamic ...large gradients $\nabla \sim k$ not small

non-vanishing frequency $\omega(k \rightarrow 0) \neq 0$

How to study non-hydrodynamic modes

Any correlator in quantum field theory out of hydrodynamic region

Specifically, effective kinetic theory with linear response

Effective kinetic theory

Linearized effective kinetic theory

Consider an Effective Kinetic Theory (set of Boltzmann equations)

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{p^0} \cdot \nabla_x\right) f_a(t, x, p) = -C_a^{LO \ 2 \leftrightarrow 2, 1 \leftrightarrow 2}[f](t, x, p)$$

 Decompose distribution into spatially homogeneous background f(t,p) and inhomogeneous perturbation δf(t,x,p)

$$f_a(t, x, p) = f_a(t, T, p) + \delta f_a(t, x, p)$$

Background Perturbation

■ Fourier transform: **gradients** → **wavenumber k**

$$\delta f_a(t, \mathbf{k}, p) = \int \frac{d^3 x}{(2\pi)^3} e^{-ix \cdot k} \delta f_a(t, \mathbf{x}, p)$$

Results in a Linearized Effective Kinetic Theory with a wavenumber k

$$\left(\frac{\partial}{\partial t} + \frac{ip \cdot k}{p^0}\right) \delta f_a(t, k, p) = -\delta C_a^{LO \ 2 \leftrightarrow 2, 1 \leftrightarrow 2}[f](t, k, p)$$

Linear response of kinetic theory

Energy-momentum tensor

Background

$$T^{\mu\nu}(t) = \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}p^{\nu}}{p} \sum_{a} v_a f_a(t,p)$$

Perturbation

$$\delta T^{\mu\nu}(t,k) = \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}p^{\nu}}{p} \sum_a v_a \delta f_a(t,k,p)$$

Response function

Response function in terms of time t and wavenumber k

$$G^{\mu\nu}_{\alpha\beta}(t,k) = \frac{\delta T^{\mu\nu}(t,k)}{\delta T^{\alpha\beta}(0,k)}$$

Consider initial condition with scalar type perturbation

$$f_a(t_0, p) = f_a^{eq}(T, p)$$
 Background $\delta f_a(t_0, k, p) = -\frac{\delta T}{T} \partial_p f_a^{eq}(T, p)$ Perturbation

~ ~

Sound channel
$$G_{00}^{00}(t,k) = \frac{\delta T^{00}(t,k)}{\delta T^{00}(0,k)}$$
 (not the only one, but they are related)

Xiaojian Du | Hard Probes 2023

Universal scales

Response functions are in terms of t and k

Different interaction strengths give different relaxation times

Universal scales

Relaxation time

 $\tau_R \propto \eta/s$

Rescaled & dimensionless time and wave-number

$$\bar{t} = t \frac{sT}{\eta}$$
 $\bar{k} = k \frac{\eta}{sT}$ Hydrodynamization time \bar{t}_{H}

Response function in universal scales

$$G(t,k) \to G\left(\bar{t},\bar{k}\right)$$

1st order hydrodynamics response function can be formulated in universal scales

$$G_{\text{hydro}}^{1\text{st}}(t,k) = \cos(c_s kt) e^{-\Gamma k^2 t} \text{ with } \Gamma = \frac{2}{3} \frac{\eta}{sT}$$

So that $G_{\text{hydro}}^{1\text{st}}(t,k) = \cos(c_s \bar{k}\bar{t}) e^{-\frac{2}{3}\bar{k}^2\bar{t}}$
Dispersion Damping

 $=4\pi$

Universality among kinetic theories

- **R**elaxation time approximation (RTA), φ -4 scalar theory (SCL)
- Yang-Mills theory (YM), Quantum chromodynamics (QCD)

Response functions from kinetic theories

- Expected to reproduce hydrodynamics at small k (long wave-length limit)
- Universality among different kinetic theories even at large k and early time

Fitting response functions in kinetic theory

■ With real (oscillation) and imaginary (damping) frequencies $G_{s,n}(t,k) \sim Z_k \exp[-i(\omega_k t + \phi_k)]$ $\omega_k = Re[\omega_k] + iIm[\omega_k]$

Remarks

 Negative frequency gives the same mode as positive frequency

Sound modes appear in pair

Expected many/infinite number of non-hydrodynamic modes

We represent them with a single nonhydrodynamic mode

Hydrodynamization time

$$\bar{t}_H = 4\pi$$

Fitting QCD response functions $(\bar{k}=0.1)$

Sound mode dominates

Fitting QCD response functions $(\bar{k}=0.5)$

Non-hydrodynamic mode appears

Fitting QCD response functions $(\bar{k}=1.0)$

More non-hydrodynamic modes appear at early time

Fitting QCD response functions $(\bar{k}=2.0)$

Non-hydrodynamic mode takes over sound mode

Dispersion relation

Dispersion relations among kinetic theories

Universality of sound modes among kinetic theories at various k

• Kinetic theories converge to 2nd-order hydrodynamics at small k $\omega_{hydro}^{2nd}(k) = c_s k - i\Gamma k^2 + \frac{\Gamma}{c_s} (c_s^2 \tau_{\pi} - \frac{\Gamma}{2}) k^3 \quad \text{with} \quad \Gamma = \frac{2}{3} \frac{\eta}{sT}$

Xiaojian Du | Hard Probes 2023

Damping relation

Damping relations among kinetic theories

Universality of sound modes among kinetic theories at various k

• Kinetic theories converge to 2nd-order hydrodynamics at small k $\omega_{hydro}^{2nd}(k) = c_s k - i\Gamma k^2 + \frac{\Gamma}{c_s} (c_s^2 \tau_{\pi} - \frac{\Gamma}{2}) k^3 \quad \text{with} \quad \Gamma = \frac{2}{3} \frac{\eta}{sT}$

Xiaojian Du | Hard Probes 2023

Residue

Residue for sound & non-hydro modes among kinetic theories

Sound mode dominates at small k (non-hydro mode dominates at large k)
 Universality of residue at some degree

Response in position space

Response in position among kinetic theories

Universality of position response

Response in position space

Response in position among kinetic theories

Universality of position response

Response in position space

Response in position among kinetic theories

Kinetic theories get closer to hydrodynamics at later time

Summary

What are expected and verified

- Kinetic theories converge to hydrodynamics at small k
- Linear response of kinetic theories can be described by sound+non-hydro modes

What are strikingly new

 Universality of energy-momentum response functions among kinetic theories (Even at early time and large k)

What are future perspectives

Possible to construct hydrodynamic description to non-equilibrium region

Thanks!