

Investigation of initial state effects in p+Pb collisions at ATLAS via measurement of dijet production

Riccardo Longo

On behalf of the ATLAS Collaboration

29th March 2023 11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

UNIVERSITY OF LLINOS URBANA-CHAMPAIGN

 $+1.2 < y^{\circ} < +2.1$

JETS AS HARD PROBES IN p+Pb COLLISIONS

Measurement of double-differential (p_T, y^*) per-collision jet yield in different centralities

 $R_{\rm pPb}$ results - no evidence for large modification of the total yield of jets relative to the geometric expectation observed

 $R_{\rm CP}$ results - suppression of the jet production in central events compared to peripheral events at all $p_{\rm T}$ at forward rapidities and for large $p_{\rm T}$ at mid-rapidity

Found to be a function of the total jet energy only - suggesting direct relation with the hard parton-parton scattering

lacksquare

 $+1.2 < y^{\circ} < +2.1$

JETS AS HARD PROBES IN p+Pb COLLISIONS

 \bullet

JETS AS HARD PROBES IN p+Pb COLLISIONS

 $+1.2 < y^{\circ} < +2.1$

JETS AS HARD PROBES IN p+Pb COLLISIONS

Riccardo Longo

JETS AS HARD PROBES IN p+Pb COLLISIONS

PRD 98 (2018) 071502

p containing a parton with large *x* interacts with a nuclear target with smaller than average crosssection and smaller than average size (*manifestation* of color fluctuations - example of color transparency)

p w/ high-*x* parton

- *p* w/ average configuration
- $x_{\rm p}$ -dependent shrinking of the average interaction strength at a given collision energy: $\lambda(x_{\rm p}) = \langle \sigma_{\rm NN}^{\rm MB} \rangle(x_{\rm p}) / \sigma_{\rm NN}^{\rm MB}$

PLB 748 (2015) 392-413

Model capable of describing both LHC (p+Pb - \uparrow) and RHIC data (PHENIX, *d*+Au @ 200 GeV - **PRL 116, 122301 (2016)**)

DIJETS HARD PROBES IN p+Pb COLLISIONS

PRD 98 (2018) 071502

p containing a parton with large x interacts with a nuclear target with smaller than average crosssection of color

The study of dijets in p+Pb collisions at 8.16 TeV offers unique opportunity to advance the understanding of the centrality dependence of jet production in p+Pb collisions

 x_p-deper average interaction strength at a given collision energy: $\lambda(x_{\rm p}) = \langle \sigma_{\rm NN}^{\rm MB} \rangle(x_{\rm p}) / \sigma_{\rm NN}^{\rm MB}$

 ΣE_{T} [GeV]

Model capable of describing both LHC (p+Pb - \uparrow) and RHIC data (PHENIX, *d*+Au @ 200 GeV - **PRL 116, 122301 (2016)**)

ATLAS 2016 p+Pb DATA @ 8.16 TeV

- 165 nb⁻¹ collected with two beam orientations
 - *p*+Pb: p going from positive to negative η ($\Delta y^{\rm CM} = -0.465$)
 - Pb+*p*: p going from negative to positive η ($\Delta y^{\rm CM} = + 0.465$)
- Largest *p*+Pb dataset collected to date by ATLAS
- Enough statistics for triple differential analysis in different centrality intervals
- $\langle \mu \rangle$ ranging from 0.15 to 0.3 across the run

Public ATLAS Luminosity Results for Run 2

Day in 2016

92% of 2016 p+Pb recorded luminosity at 8.16 TeV

P+Pb COLLISIONS IN ATLAS

Pb ion

EMCal+HCal system

 $|\eta| < 4.9$

29/03/2023

Convention: $y_b > 0$ corresponds to the proton-going direction

Pb-going Forward Calorimeter

р

L1 + High Level Trigger system

MEASUREMENT OF PER-EVENT DIJET

- Anti- $k_t R = 0.4$ calorimeter jets
- Measurement of the centrality-dependence of the triple differential per-event dijet yield
 - Average transverse momentum: $p_{T,Avg} = \frac{p_{T,1} + p_{T,2}}{2}$
 - ► Boost of Dijet System: $y_b = \frac{1}{2}(y_1^{CM} + y_2^{CM})$
 - Dijet Half Rapidity Separation: $y^* = \frac{1}{2} |y_1^{CM} y_2^{CM}|$
- 3D measurement provides access to partonic system kinematics

KINEMATIC DOMAIN

ATLAS-CONF-2023-011

$$30 \,\text{GeV} < p_{\text{T,Avg}} < 10^3 \,\text{GeV}$$

 $-4.5 < y_b < 4.5$
 $0 < y^* < 4.5$

- Measurement that probes the internal structure of the *p* and the Pb over four orders of magnitude
- ${}^{\mathcal{X}}\mathsf{Pb}$ ATLAS Preliminary $\sqrt{s_{NN}} = 8.16 \text{ TeV}, L = 165 \text{ nb}^{-1}$ 10^{-2} anti- k_t R = 0.4, p+Pb 10^{-4} ${}^{\mathcal{X}}{}_{\mathsf{Pb}}$ 10⁻² 10⁻⁴ ${}^{\mathcal{X}}{}_{\mathsf{Pb}}$ 10⁻² 10-4 ${}^{\mathcal{X}}{}_{\mathsf{Pb}}$ 10⁻² $0.0 < y^* < 2.0$ $-4.5 < y_{\rm b} < -3.0$ 10^{-4} **1** 10⁻⁴ 10⁻⁴ 10⁻² \mathcal{X}_p

Backward

- Unfolding of detector effects in $p_{\rm T,Avg}$ distributions using 1D bayesian approach
 - Allowed by limited migration in y_b and y* (also corrected for during unfolding)
- The measurement is not directly carried out in parton system kinematic variables

CENTRALITY DETERMINATION

- Centrality determined using ΣE_T in the Pb-going arm of the FCal (see **Eur. Phys. J. C 76 (2016) 199**)
 - Best sensitivity to collision geometry
 - Method successfully applied in former ATLAS *p*+Pb Analyses (PLB 748 (2015) 392–413)

- Centrality determination fully separated from the analysis thanks to fiducial cut on η of leading and sub-leading jet
- Two centrality classes considered in the analysis:
 - ▶ $0-20\% \rightarrow Central events$
 - ► $60-90\% \rightarrow \text{Peripheral events}$

0.25

Riccardo Longo

RECONSTRUCTION PERFORMANCE

- Jet Energy Resolution (JER) and Jet Energy Scale (JES) compatible between the two beam orientations
- JES and JER corrected for at level of unfolding
- Jet reconstruction efficiency > 99% in all the η regions of the calorimeter for $p_{\rm T}^{\rm truth} = 25 \,{\rm GeV}$
- No significant dependence on the centrality of the collision

Central collisions (0-20%)

Riccardo Longo

Dijet Event Selection

- Stable detector conditions and at least one primary vertex reconstructed
- Events selected by level-1 + high-level jet triggers
- Fiducial cuts on η of the jets ($-2.8 < \eta < 4.5$)
- $p_{\rm T}$ requirement on leading ($p_{\rm T} > 30 \,{\rm GeV}$) and sub-leading ($p_{\rm T} > 25 \,{\rm GeV}$) jets
- In-time pile-up rejection via cut on number of tracks associated to secondary vertices
- UPC contribution effectively rejected by centrality selection (0-90%)

Monte Carlo Simulations

 Pythia8 pp dijet events boosted in p+Pb/Pb+p reference frame and overlaid onto real minimum bias *p*+Pb data

RATIO CENTRAL TO PERIPHERAL

- production in *p*+Pb collisions

- to determine the relation between the mean number of participants and the event geometry
- Mean number of participants used then to evaluate the nuclear thickness function, T_{AB}

ATLAS-CONF-2023-011

29/03/2023

MAPPING R_{CP} RESULTS ON PARTON-LEVEL KINEMATICS

Approximated parton-level kinematics in each bin

- The parton-level kinematics in each bin can be approximated by using the average value of $y_{\rm b}$ and y^* in each kinematic bin
- For $p_{T,Avg}$, the center of the bin is used

$$x_{\rm p} \simeq \frac{2p_{\rm T,Avg}}{\sqrt{s}} e^{\langle y_{\rm b} \rangle} \cosh\langle y^* \rangle, \quad x_{\rm Pb} \simeq \frac{2p_{\rm T,Avg}}{\sqrt{s}} e^{-\langle y_{\rm b} \rangle} \cosh\langle y^* \rangle$$
$$m_{1,2} = \sqrt{x_{\rm p} x_{\rm Pb} s} \simeq 2p_{\rm T,Avg} \cosh\langle y^* \rangle$$

Riccardo Longo

MAPPING R_{CP} RESULTS ON PARTON-LEVEL KINEMATICS

Approximated parton-level kinematics in each bin

- The parton-level kinematics in each bin can be approximated by using the average value of $y_{\rm b}$ and y^* in each kinematic bin
- For $p_{T,Avg}$, the center of the bin is used

29/03/2023

ATLAS-CONF-2023-011

Riccardo Longo

DJET $R_{CP}(x_n)$

ATLAS-CONF-2023-011

29/03/2023

П

Log-linear decrease observed as a function of the fractional momenta of the parton extracted from the proton, x_p

DIJET \mathbf{R}_{CP}(x_p)

ATLAS-CONF-2023-011

29/03/2023

2

Log-linear decrease observed as a function of the fractional momenta of the parton extracted from the proton, x_p

The strongest R_{CP} suppression is observed in correspondence with the proton's valence region

ATLAS-CONF-2023-011

DJET $\mathbf{R}_{CP}(x_{Pb})$

ATLAS-CONF-2023-011

29/03/2023

Overall, an increasing $R_{\rm CP}$ suppression while moving towards low-*x*_{Pb} is observed

DIJET $\mathbf{R}_{CP}(x_{Pb})$

Overall, an increasing $R_{\rm CP}$ suppression while moving towards low- x_{Ph} is observed

ATLAS-CONF-2023-011

29/03/2023

For each slice in $y_{\rm b}$, a log-linear trend with increasing suppression moving toward higher x_{Ph} is observed

DJET $R_{CP}(x_{Pb})$

Overall, an increasing R_{CP} suppression while moving towards low- x_{Pb} is observed

ATLAS-CONF-2023-011

29/03/2023

DIJET $\mathbf{R}_{CP}(x_p)$ IN BINS OF x_{Pb}

ATLAS-CONF-2023-011

29/03/2023

Results now displayed as a function of approximated x_p , in different intervals of approximated $x_{\rm Pb}$

DIJET $\mathbf{R}_{CP}(x_p)$ IN BINS OF x_{Pb}

ATLAS-CONF-2023-011

29/03/2023

DIJET $\mathbf{R}_{CP}(x_p)$ IN BINS OF x_{Pb}

ATLAS-CONF-2023-011

function of approximated x_p , in different intervals of **ATLAS** Preliminary approximated $x_{\rm Pb}$ Intriguing break-down of the log-linear structure observed for results in the Pb valence region Highest suppression observed corresponds to the **lowest** x_{Ph} class of results

Results now displayed as a

- 8.16 TeV (ATLAS-CONF-2023-011 - see also poster by A.Tate).
 - Both per-event dijet yield and R_{CP} preliminary results are reported
- 3D analysis using dijets \rightarrow detailed mapping of the results in terms of approximated lacksquareparton system kinematics.
 - New input to understand the R_{CP} suppression in (di)jet production in p+A collisions
- The results suggest that the observed trend is governed by physics effects similar to 🦟 those probed in the inclusive production of jets in p+Pb collisions at 5.02 TeV

29/03/2023

SYSTEMATICS: PER-EVENT DIJET YIELD

29/03/2023

Dominant source of systematic uncertainty on the per-event dijet yields comes from the Jet Energy Scale (JES) Other uncertainties assigned are associated to the Jet Energy Resolution (JER), the unfolding procedure, and the exclusion of a portion of the Hadronic Endcap Calorimeter (HEC) that was disabled during the 2016 run

JETS IN p+Pb: FURTHER INTERPRETATIONS (& DATA)

Suppression of soft particle production dependent on the amount of energy removed from the projectile proton PRC 93 (2016) 044901

- PLB 747 (2015) 441
- production of a hard jet PRC 97 (2018) 5, 054904

Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of *pp* collisions at $\sqrt{s} = 2.76 \,\mathrm{TeV}$ with ATLAS PLB 756 (2016) 10-28

SYSTEMATICS: R_{CP}

- Dominant source of systematic uncertainty on the R_{CP} is associated to the Jet Energy Resolution (JER)
- Other uncertainties assigned are associated to the Jet Energy Scale (JES), the unfolding procedure, the exclusion of a portion of the Hadronic Endcap Calorimeter (HEC) that was disabled during the 2016 run and the evaluation of the nuclear overlap function T_{AB}
- All of the systematic uncertainties, except for the one related to the unfolding, are treated as correlated in the R_{CP}

Riccardo Longo

PER-EVENT DIJET YIELDS: 0-20%

- the Pb-going FCal
- 29/03/2023

• Per-event dijet yield decreasing with $p_{T,Avg}$ and with y^* in each y_b bin

• Same results for 60-90% available in backup

• Backward-most y_{b} bins excluded from the analysis given the sizable impact of the fiducial cut applied to ensure no contamination from jets in

PER-EVENT DIJET YIELDS: 60-90%

- the Pb-going FCal
- 29/03/2023

• Similar trends also observed in peripheral collisions

• Backward-most y_{b} bins excluded from the analysis given the sizable impact of the fiducial cut applied to ensure no contamination from jets in

DIJET $\mathbf{R}_{CP}(x_p)$ IN BINS OF $m_{1,2}$

29/03/2023

35

RECONSTRUCTION PERFORMANCE

- Other beam orientation compared to the one shown in the main slides
- Compatible JES and JER picture
 - no significant detector effects related to the beam orientation are observed

Central collisions (0-20%)