EARLY TIME DYNAMICS OF CONSERVED CHARGES IN HEAVY-ION COLLISIONS

TRAVIS DORE

In collaboration with: Xiaojian Du and Soeren Schlichting

UNIVERSITÄT BIELEFELD

initial state

at only slightly later times

How to evolve from the non-equilibrium initial state to a hydrodynamic description?

Large pressure anisotropy in the bulk

Spatial fluctuations

- Vs.

O. Garcia-Montero, H. Elfner, S. Schlichting in prep

INITIAL STATE TO HYDRO: PHYSICAL CONNECTIONS

In this work, we employ QCD effective kinetic theory which brings the system towards its hydrodynamic description

$$p^{\mu}\partial_{\mu}f(x,p) = \mathcal{C}_{2\leftrightarrow 2}[f] + C_{1\leftrightarrow 2}[f]$$

"Effective"

INITIAL STATE TO HYDRO: PHYSICAL CONNECTIONS $au_{hydro} \sim 1 { m fm/c}$ $au_{EKT} \sim 0.1 { m fm/c}$ $au = 0^+$ Hydrodynamic Initial energy deposition QCD kinetic theory and early-time dynamics description Arnold, Moore, Yaffe, JHEP 01 (2003) 030, Overlap in validity offers less sensitivity for switching times R. Baier, et al, Phys.Lett.B 502 (2001), $p^{\mu}\partial_{\mu}f(x,p) = \mathcal{C}_{2\leftrightarrow 2}[f] + \mathcal{C}_{2\leftrightarrow 2}[f]$ $(C_{1\leftrightarrow 2}[f])$ In this work, we employ QCD effective Elastic scattering kinetic theory which brings the system Inelastic scattering towards its hydrodynamic description "Effective"

Hydrodynamization for the bulk of the system

- Symmetries of the bulk (or background) :
- Isotropic in transverse plane (no fluctuations)
- No transverse expansion
- Boost invariance

Hydrodynamization for the bulk of the system

- Symmetries of the bulk (or background) :
- > Isotropic in transverse plane (no fluctuations)
- \succ No transverse expansion
- Boost invariance

On time scales of a relaxation time, τ_R^{eq} , the system is well described by hydrodynamics

$$T_R^{eq}(au) = rac{4\pi\,\eta/s}{T_{eff}(au)}$$

Hydrodynamization for the bulk of the system

- Symmetries of the bulk (or background) :
- Isotropic in transverse plane (no fluctuations)
- \succ No transverse expansion
- Boost invariance

On time scales of a relaxation time, τ_R^{eq} , the system is well described by hydrodynamics

$$rac{eq}{R}(au) = rac{4\pi\,\eta/s}{T_{eff}(au)}$$

Hydrodynamization for inhomogeneous systems

Hydrodynamization for the bulk of the system

- Symmetries of the bulk (or background) :
- Isotropic in transverse plane (no fluctuations)
- \succ No transverse expansion
- Boost invariance

On time scales of a relaxation time, τ_R^{eq} , the system is well described by hydrodynamics

$${}^{eq}_R(au) = rac{4\pi\,\eta/s}{T_{eff}(au)}$$

Hydrodynamization for inhomogeneous systems


```
Two approaches:
```

Hydrodynamization for the bulk of the system

- Symmetries of the bulk (or background) :
- Isotropic in transverse plane (no fluctuations)
- No transverse expansion
- Boost invariance

On time scales of a relaxation time, τ_R^{eq} , the system is well described by hydrodynamics

 $au_{R}^{eq}(au) = rac{4\pi \, \eta/s}{T_{eff}(au)}$ **Two approaches:** 1) Full kinetic theory and quantification

 Full kinetic theory and quantification in (2+1) scenario, see talk from Clemens
 Werthmann right before coffee break

Hydrodynamization for inhomogeneous systems

Hydrodynamization for the bulk of the system

- Symmetries of the bulk (or background) :
- Isotropic in transverse plane (no fluctuations)
- No transverse expansion
- Boost invariance

On time scales of a relaxation time, τ_R^{eq} , the system is well described by hydrodynamics

 $au_R^{eq}(au) = rac{4\pi \, \eta/s}{T_{eff}(au)}$ **Two approaches:** 1) Full kinetic theory and quantification in

(2+1) scenario, see talk from **Clemens** Werthmann right before coffee break

Hydrodynamization for

inhomogeneous systems

2) Treat inhomogeneities as fluctuations on a locally symmetric background: KøMPøST framework

A. Kurkela, et al., Phys. Rev. Lett. 122 (2019) 12, 122302, Phys. Rev. C 99 (2019) 3, 034910

 $T^{\mu
u}\left(au,x
ight)=T^{\mu
u}_{BG}+\int_{\circ}G^{\mu
u}_{lphaeta}(au_{0}, au,x_{0},x)\;\delta T^{lphaeta}(au_{0},x_{0})$

A. Kurkela, et al., Phys. Rev. Lett. 122 (2019) 12, 122302, Phys. Rev. C 99 (2019) 3, 034910

$T^{\mu u}(au, x) = T^{\mu u}_{BG} + \int_{\circ} G^{\mu u}_{lphaeta}(au_0, au, x_0, x) \ \delta T^{lphaeta}(au_0, x_0)$

> Causal circle defines a symmetric, averaged background with small fluctuations on top

A. Kurkela, et al., Phys. Rev. Lett. 122 (2019) 12, 122302, Phys. Rev. C 99 (2019) 3, 034910

6

$T^{\mu u}(au, x) = T^{\mu u}_{BG} + \int_{\circ} G^{\mu u}_{\alpha\beta}(au_0, au, x_0, x) \, \delta T^{lphaeta}(au_0, x_0)$

Causal circle defines a symmetric, averaged background with small fluctuations on top Attractor solution evolves background. Response functions, $G^{\mu\nu}_{\alpha\beta}$, evolve fluctuations

A. Kurkela, et al., Phys.Rev.Lett. 122 (2019) 12, 122302, Phys.Rev.C 99 (2019) 3, 034910

$T^{\mu u}(au, x) = T^{\mu u}_{BG} + \int_{\circ} G^{\mu u}_{\alpha\beta}(au_0, au, x_0, x) \, \delta T^{lphaeta}(au_0, x_0)$

> Causal circle defines a symmetric, averaged background with small fluctuations on top > Attractor solution evolves background. Response functions, $G^{\mu\nu}_{\alpha\beta}$, evolve fluctuations

Generic framework for any microscopics:

- System has attractor background that can be calculated
- Response functions can be calculated

A. Kurkela, et al., Phys. Rev. Lett. 122 (2019) 12, 122302, Phys. Rev. C 99 (2019) 3, 034910

$T^{\mu u}(au, x) = T^{\mu u}_{BG} + \int_{\circ} G^{\mu u}_{\alpha\beta}(au_0, au, x_0, x) \, \delta T^{lphaeta}(au_0, x_0)$

> Causal circle defines a symmetric, averaged background with small fluctuations on top > Attractor solution evolves background. Response functions, $G^{\mu\nu}_{\alpha\beta}$, evolve fluctuations

Generic framework for any microscopics:

- System has attractor background that can be calculated
- Response functions can be calculated
- > In this work we use QCD kinetic theory with conserved charges

X. Du, S. Schlichting, Phys.Rev.Lett. 127 (2021) TD, X. Du, S. Schlichting, in prep

12, 122301, Phys.Rev.D 104 (2021) 5, 054011, ADDING CONSERVED CHARGES

First step: zero charge background

By expanding off a vanishing density background, light quarks can be treated with the same response functions without density dependence

X. Du, S. Schlichting, Phys.Rev.Lett. 127 (2021) TD, X. Du, S. Schlichting, in prep

12, 122301, Phys.Rev.D 104 (2021) 5, 054011, ADDING CONSERVED CHARGES

First step: zero charge background

By expanding off a vanishing density background, light quarks can be treated with the same response functions without density dependence

7

What do these response functions look like?

ENERGY RESPONSE FUNCTIONS

Response functions give information on redistribution of quantities at a given \u03c0/\u03c0_R^{eq}

- Scalar-Scalar: energy density redistribution
- Vector-Scalar: change of transverse flow
- From free streaming to wakes and wave fronts with speed of sound propagation

CHARGE RESPONSE FUNCTIONS: DEGENERATE LIGHT QUARKS

- Redistribution of quantities at a given τ/τ_R^{eq}
 - Scalar-Scalar: charge density redistribution
 - Vector-Scalar: change of charge current, $n^
 u \sim
 abla^
 u \left(rac{\mu}{T}
 ight)$
- From free streaming to diffusive behavior

HEAVY ION COLLISION INITIAL STATE WITH CHAGES

In reality, the baryon density deposited at high energies is not vanishing!

HEAVY ION COLLISION INITIAL STATE WITH CHAGES

20

The rapidity distribution of baryon density and energy density can be calculated in an IP-Sat model and is non-zero at mid rapidity!

In reality, the baryon density deposited at high energies is not vanishing!

Oscar Garcia-Montero Wednesday, 14:00 Early-time dynamics

$au_0=0.0015$

 $au_{hydro} = 1.2005$

 $au_0=0.0015$

SUMMARY AND OUTLOOK

- ➢IT IS INTEGRAL TO UNDERSTAND THE THERMALIZATION PROCESSES OF QCD AND TO SIMULATE IT ACCURATELY IN OUR MODELS
- THE EVOLUTION OF CONSERVED CHARGES IN HIGH ENERGY HIC'S IS A MISSING PIECE OF OUR UNDERSTANDING
- >THE KØMPØST FRAMEWORK CAN HANDLE THIS TASK
- ►NEXT STEPS:
 - >HYDRODYNAMIC SIMULATION
 - ►QCD KINETIC THEORY WITH FINITE CHARGE BACKGROUND
 - ≻(3+1) KøMPøST