

New constraints on nucleon structure from LHCb Sara Sellam* on behalf of the LHCb Collaboration

MINISTERIO DE CIENCIA E INNOVACIÓN

*sara.sellam@usc.es

- Neutral pion production in *p*Pb at $\sqrt{s_{NN}} = 8.16$ TeV. <u>arXiv:2204.10608</u> accepted by PRL
- at $\sqrt{s_{NN}} = 13$ TeV. <u>Phys.Rev.Lett. 128 (2022) 8, 082001</u>

• Measurement of Z boson production cross-section in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV. arXiv:2205.10213

• Study of Z bosons produced in association with charm in the forward region of pp collision

LHCb Detector

- From heavy flavour physics to a general-purpose detector in the forward region.
- Forward detector fully instrumented in $2 < \eta < 5$.
- Excellent tracking, momentum resolution, and particle identification.

JINST 3 (2008)S08005

sara sellam

IJMPA 30 (2015) 1530022

Accessible range in the (x, Q^2) plane of LHCb

 Q^2 is the momentum transfer between a particle and the incident particle in a collision.

sara sellam

LHCb's impact on nPDF fits

LHCb measurements have a significant impact on nPDFs fits.

EPPS21 (EPJC 82 (2022) 5, 413)

sara sellam

nNPDF3.0 (EPJC 82 (2022) 6, 507)

LHCb D^0 meson production in *p*Pb collisions at $\sqrt{s} = 5$ TeV: <u>JHEP 1710 (2017) 090</u>

Neutral pion production in *p*Pb at $\sqrt{s_{NN}} = 8.16$ TeV

Motivation :

- π^0 production is particularly sensitive to cold nuclear matter (CNM) effects.
- The Measurement can provide constraints on nPDFs for x between 10^{-6} and 10^{-1} .

Analysis :

• Neutral pions are reconstructed with one converted photon and one ECAL photon $\pi^0 \rightarrow \gamma^{cnv} \gamma^{cal}$ for better momentum resolution.

arXiv:2204.10608 accepted by PRL

Neutral pion production in *p*Pb at $\sqrt{s_{NN}} = 8.16$ TeV

Analysis :

- π^0 yield is reconstructed in p_T and η_{cms} bins.
- The combinatorial background is modelled using charged tracks from MC.
- The peak at the lower mass arises when a converted photon is combined lacksquarewith its own bremsstrahlung radiation.

sara sellam

 $R_{p\rm Pb} \equiv \frac{1}{A} \frac{\mathrm{d}\sigma_{p\rm Pb}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\rm T}}$

A = 208

Neutral pion production in *p*Pb at $\sqrt{s_{NN}} = 8.16$ TeV

Forward

- The nuclear modification factor shows a strong suppression.
- The measurement is also compared to the charged-particle nuclear modification factor by LHCb.
- The data can provide powerful constraints on nPDF at low x.

Backward

- Enhancement of π^0 production with respect to pp at intermediate p_T .
- The enhancement is smaller than the charged particles, studies of other identified particles $(p, K, \eta^{(\prime)})$ will help clarify the picture.

sara sellam

arXiv:2204.10608 accepted by PRL

Backward

 R_{pPl}

1

Motivation :

- Z-boson production carries valuable information in constraining the PDFs and nPDFs.
- Clean probe of the initial state at low- and high-x.

Analysis :

- $Z \rightarrow \mu^+ \mu^-$ events are reconstructed in a fiducial region with $60 < m_{\mu^+ \mu^-} < 120$ GeV.
- The rapidity range in the centre of mass frame (y_7^*) is :
 - Forward (fw) collision : $1.53 < y_{\mu}^* < 4.03$
 - Backward (bw) collision : $-4.97 < y_{\mu}^* < -2.47$
- The Nuclear modification factor $R_{pPb}^{bw/fw}(x)$ and the forward and backward $R_{FB}(x)$ ratio are corrected with a factor k(x) using POWHEGBOX with the proton PDF CTEQ6.1.

sara sellam

The nuclear modification factor :

$$R_{pPb}^{bw/fw}(x) = k_{pPb}^{bw/fw}(x) \frac{d\sigma(pPb)}{208 \cdot d\sigma(pp)}$$

x can be y_Z^* , p_T^Z or ϕ^*

 σ' indicates that this cross-section is calculated theoretically

$$k_{p\text{Pb}}^{\text{fw}}(x) = \frac{\mathrm{d}\sigma'_{(pp,2.0 < y^*_{\mu} < 4.5)}/\mathrm{d}x}{\mathrm{d}\sigma'_{(pp,1.53 < y^*_{\mu} < 4.03)}/\mathrm{d}x}$$
$$k_{p\text{Pb}}^{\text{bw}}(x) = \frac{\mathrm{d}\sigma'_{(pp,-4.5 < y^*_{\mu} < -2.0)}/\mathrm{d}x}{\mathrm{d}\sigma'_{(pp,-4.97 < y^*_{\mu} < -2.47)}/\mathrm{d}x}$$

To correct for the different y_{μ}^{*} acceptance between pPb and pp collisions

Cross section in the forward region

NLO pQCD calculations agree with the data within uncertainties

sara sellam

Cross section in the backward region 2.5 $\left[Ae \right] 2.0 2.0 2.0$ LHCb CTEQ6.1 $p Pb \sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ CT14+EPPS16 CTEQ6.1+nCTEQ15 Backward Data $-4.0 < y_Z^* < -2.5$ 1.0 $\eta \sigma_{\pm}^{\mu+\eta} = 0.5$ 0.0 155 10 $p_{\rm T}^Z \, [{\rm GeV}]$

- The nuclear modification factor in the forward region is well described by the theoretical predictions.
- The backward region is slightly higher but statistically compatible with the theory's predictions.

Motivation :

- The existence of intrinsic heavy quarks within the proton wavefunction remains a subject of ongoing debate and has not been definitively established.
- Non-perturbative IC manifests as valencelike charm content in the PDFs.

Ideal probe

Direct sensitivity to the large-x charm PDF.

Q is large enough such that hadronic and nuclear effects are negligible

Z+jet events where the jet originates from a c quark

sara sellam

Phys.Rev.Lett. 128 (2022) 8, 082001

IC contribution produces a clear enhancement in \mathscr{R}_i^c for large y(Z).

- Jet reconstruction was performed using anti- k_T clustering algorithm.
- The c jet yields are determined using a c-tagging algorithm that looks for a displaced vertex (DV) inside the jet.
- Two properties: $m_{cor}(DV)$ and $N_{trk}(DV)$ are used to separate charm jets from beauty and light jets.

 $m_{cor}(DV)$: The corrected mass of a displaced vertex. $N_{trk}(DV)$: The number of tracks in the DV.

The fiducial region

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 \text{GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

$$m_{cor}(DV) \equiv \sqrt{m(DV)^2 + [p(DV)\sin\theta]^2 + p(DV)\sin\theta}$$

 θ is the angle between the momentum and the flight direction of the DV

sara sellam

- The observed \mathscr{R}_{i}^{c} values are consistent with both no-IC and IC \bullet hypotheses in the first two y(Z) intervals.
- A sizable enhancement at forward Z rapidities is observed with a wave function of $|uudc\bar{c}\rangle$
- The existence of IC is also studied in LHCb's fixed target mode. \bullet (see Kara Mattioli's talk: <u>New measurements in fixed-target</u> collisions at LHCb)

Phys.Rev.Lett. 128 (2022) 8, 082001

The impact of LHCb Z+charm

Default PDFs that include intrinsic charm are compatible with LHCb measurement particularly for the highest-rapidity bin.

Including \mathscr{R}_{j}^{c} modularly reduces the uncertainty on the charm PDF.

 $xc^{+}(x)$

sara sellam

LHCh

- The nuclear modification factor for the neutral pion can provide powerful constraints on nPDF at low x in the forward region.
- The cross-section measurement of Z boson in *p*Pb at low transverse momentum can help TMD studies in QCD.
- The ratio $\mathscr{R}_j^c \equiv \sigma(Zc)/\sigma(Zj)$ exhibits an enhancement at forward Z rapidities.
- Future LHCb measurements are coming: identified particles production $(p, K, \eta^{(\prime)})$ will allow us to well constrain the nPDFs.

Backup

17

Motivation :

- Z-boson production carries valuable information in constraining the PDFs and nPDFs.
- Clean probe of the initial state at low- and high-x.

Analysis :

- $Z \rightarrow \mu^+ \mu^-$ events are reconstructed in a fiducial region with $60 < m_{\mu^+ \mu^-} < 120$ GeV.
- The rapidity range in the centre of mass frame (y_7^*) is :
 - Forward (fw) collision : $1.53 < y_{\mu}^* < 4.03$
 - Backward (bw) collision : $-4.97 < y_{\mu}^* < -2.47$
- The Nuclear modification factor $R_{pPb}^{bw/fw}(x)$ and the forward and backward $R_{FB}(x)$ ratio are corrected with a factor k(x) using PowhegBox with the proton PDF CTEQ6.1 to correct for the different y_{μ}^* acceptance between pPb and pp collisions

Cross section :

 $\frac{\mathrm{d}\sigma_{Z \to \mu^+ \mu^-}^{\mathrm{fid}}}{\mathrm{d}x} = \frac{\rho(x) \cdot f_{\mathrm{FSR}}}{\mathscr{L} \cdot \epsilon^{\mathrm{reco\&sel}}(x) \cdot \epsilon^{\mathrm{mon-id}}(x) \cdot \epsilon^{\mathrm{trig}}(x)}$ dN_{cand} dx x can be y_Z^* , p_T^Z or ϕ^*

Parameter	Description
N_{cand}	Number of observed candidates after the selection in the fiducial r
ho	Purity, the fraction of signal events
f_{FSR}	Correction for final state radiation (FSR)
${\cal L}$	Integrated luminosity
$\epsilon^{reco\&sel}$	Efficiency of reconstruction and selection
$\epsilon^{muon-id}$	Efficiency of muon identification
ϵ^{trig}	Efficiency of trigger selection

The nuclear modification factor :

$$R_{pPb}^{bw/fw}(x) = k_{pPb}^{bw/fw}(x) \frac{d\sigma(pPb)}{208 \cdot d\sigma(pp)}$$

The forward and backward ratio:

$$R_{FB}(x) = \frac{d\sigma_{fw}/dx}{d\sigma_{bw}/dx} \cdot k_{FB}(x) \bigg|_{2.5 < |y_Z^*| < 4.0}$$

 $k_{pPb}^{fw/bw}(x) =$

 $\mathrm{d}\sigma'_{pp}/\mathrm{d}x$

 σ' indicates that this

cross-section is

