

by Dana Avramescu University of Jyväskylä, Center of Excellence in Quark Matter based on [2303.05599]

Supervisors: T. Lappi, H. Mäntysaari (Uni Jyväskylä) Collaborators: A. Ipp, D. Müller (TU Wien), V. Greco, M. Ruggieri (Uni Catania), V. Băran (Uni Bucharest)

Hard Probes in Aschaffenburg, March 2023

General outline

1 Introduction

Framework • Literature • This study

2 Hard probes in Glasma Glasma • Probes in Glasma • Numerics

3 Key results Heavy quarks • Jets

4 Highlights

Heavy-ion collisions

Heavy-ion collision \leftrightarrow multi-stage process with each stage \mapsto effective theory

Figure from S. Schlichting's talk [1]

Initial stage

Initial stage using Color Glass Condensate \leftrightarrow EFT for high energy QCD High energy nucleus \rightsquigarrow many gluons \Rightarrow classical colored fields \equiv Glasma

Figure from F. Salazar's talk [2]

2018 Coci, Das, Greco, Ruggieri, Plumari, Sun [1805.09617], [1902.06254]

- 2020 🖕 Ipp, Müller, Schuh
- 2020 🖕 Boguslavski, Kurkela, Lappi, Peuron
- 2021 🖕 Carrington, Czajka, Mrowczynski
- 2023 🖕 Avramescu, Băran, Greco, Ipp, Müller, Ruggieri

Heavy quarks in Glasma Highlights: Diffusion, v_2 , R_{AA}

Lightlike jets in Glasma Highlight: Large \hat{q} at small τ

Static quarks in gluon plasma Highlight: Rapid increase in $\langle p^2 \rangle$

Analytical hard probes in Glasma Highlight: Significant \hat{q} in early τ

This talk. No spoilers.

- 2020 🖕 Ipp, Müller, Schuh
- 2020 🖕 Boguslavski, Kurkela, Lappi, Peuron
- 2022 🖕 Carrington, Czajka, Mrowczynski
- 2023 🖕 Avramescu, Băran, Greco, Ipp, Müller, Ruggieri

2023 Boguslavski, Kurkela, Lappi, Lindenbauer, Peuron [2303.12520], [2303.12595] Hard probes with kinetic theory Highlight: Fill gap Glasma \mapsto hydro

Motivation

Literature \Rightarrow qualitatively significant impact

 $\label{eq:constraint} \textit{This study: How much?} \Leftrightarrow \textit{refinements:} \begin{cases} \textit{fields} & \mapsto \mathsf{SU(3) \ lattice} \\ \textit{particles} \mapsto \textit{full \ dynamics} \end{cases} \Rightarrow \textsf{GPU \ solver} \end{cases}$

Approach

Prerequisite: Classical lattice gauge theory $\xrightarrow{\text{solver}}$ Glasma fields

Task: Glasma fields $\xleftarrow{\text{background}}$ ensemble of particles $\xleftarrow{\text{solver}}$ colored particle-in-cell method

Approach

Prerequisite: Classical lattice gauge theory solver Glasma fields

Task: Glasma fields $\stackrel{\text{background}}{\longleftrightarrow}$ ensemble of particles $\stackrel{\text{solver}}{\longleftrightarrow}$ colored particle-in-cell method

CGC basics (technicalities)

Separation of scales between small- $_x$ and large- \mathcal{X} degrees of freedom Small- $_x \Leftrightarrow$ classical gluon fields \mapsto Yang-Mills equations with sources \Leftrightarrow large- \mathcal{X}

 $\begin{array}{l} \mathsf{McLerran-Venugopalan\ model}\mapsto J^{\mu,a}(x)\propto \delta^{\mu+}}\rho^a\ (x^-, \pmb{x}_{\perp})\\ \texttt{large\ nuclei} \uparrow \qquad \qquad \uparrow \texttt{stochastic\ variable} \end{array}$

Two-point function $\langle
ho^a
ho^a
angle \propto Q_s^2$ saturation momentum

CGC basics (technicalities)

Separation of scales between small- $_x$ and large- \mathcal{X} degrees of freedom Small- $_x \Leftrightarrow$ classical gluon fields \mapsto Yang-Mills equations with sources \Leftrightarrow large- \mathcal{X}

Two-point function $\langle
ho^a
ho^a
angle \propto Q_s^2$ saturation momentum

CGC basics (technicalities)

Separation of scales between small- $_x$ and large- \mathcal{X} degrees of freedom Small- $_x \Leftrightarrow$ classical gluon fields \mapsto Yang-Mills equations with sources \Leftrightarrow large- \mathcal{X}

Two-point function $\langle
ho^a
ho^a
angle \propto Q_s^2$ saturation momentum

Collision of CGC nuclei

Figure credits to D. Müller

- Thin nuclei along light-cone
- Glasma fields in the forward
 light-cone

Milne coordinates (τ, η) $\tau = \sqrt{2x^+x^-}, \ \eta = \ln(x^+/x^-)/2$

Boost-invariant approximation fields = $indep(\eta)$

Numerical solution of Yang-Mills equations \Rightarrow Glasma

Glasma fields

Relevant scale Q_s Fields dilute after $\delta \tau \simeq Q_s^{-1}$, arrange themselves in correlation domains of $\delta x_T \simeq Q_s^{-1}$

Boost-invariant, highly anisotropic

Particles in YM fields (technicalities)

 $\begin{array}{l} \text{Wong's equations} \leftrightarrow \text{classical equations of motion for particles } (x^\mu, p^\mu, Q) \\ \quad \text{evolving in Yang-Mills fields } A^\mu \end{array}$

CPIC solver $\xrightarrow{\text{assures}} Q \in SU(3)$, conservation of Casimir invariants

Glasma plate (just before lunch...)

Spaghetti coordinate trajectories

Noodles momentum trajectories

Quantifying the effect of Glasma

Momentum broadening

$$\delta p^2_{\mu}(\tau) \equiv p^2_{\mu}(\tau) - p^2_{\mu}(\tau_{\rm form})$$

Instantaneous transport coefficient

$$rac{\mathrm{d}}{\mathrm{d} au}\langle\delta p_i^2(au)
angle\equivegin{cases} \kappa_i(au), & \mathrm{heavy\ quarks}\ \hat{q}_i(au), & \mathrm{jets} \end{cases}$$

Anisotropy $\equiv \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$

Toy model particle setup

- Uniformly distributed in (x, y)
 - Formed at $au_{
 m form} \propto 1/m$
 - Fixed initial $p_T(au_{
 m form})$

Glasma setup

- Large nuclei, central collisions
- Saturation scale $Q_s = 2 \,\mathrm{GeV}$

Quantifying the effect of Glasma

Momentum broadening

 $\delta p^2_{\mu}(\tau) \equiv p^2_{\mu}(\tau) - p^2_{\mu}(\tau_{\rm form})$

Instantaneous transport coefficient

$$rac{\mathrm{d}}{\mathrm{d} au}\langle\delta p_i^2(au)
angle\equivegin{cases} \kappa_i(au), & \mathrm{heavy\ quarks}\ \hat{q}_i(au), & \mathrm{jets} \end{cases}$$

Anisotropy $\equiv \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$

Toy model particle setup

- Uniformly distributed in (x, y)
 - Formed at $\tau_{\rm form} \propto 1/m$
 - Fixed initial $p_T(au_{
 m form})$

Glasma setup

- Large nuclei, central collisions
- Saturation scale $Q_s = 2 \,\mathrm{GeV}$

Transport in Glasma (study case: beauty quarks)

Rapid increase in $\langle p^2 \rangle$

 \Rightarrow Early peak* in κ

 $^*\kappa_{
m peak}pprox 15\,{
m GeV}^2/{
m fm}$ but peak value depends on particle $(m,\, au_{
m form},\,$ initial $p_T)$ and Glasma (Q_s)

Transport in Glasma (study case: beauty quarks)

Rapid increase in $\langle p^2 \rangle$

 \Rightarrow Early peak* in κ

 $\kappa_{\rm peak} \approx 15 \,{\rm GeV}^2/{\rm fm}$ but peak value depends on particle (m, $\tau_{\rm form}$, initial p_T) and Glasma (Q_s)

Jet momentum broadening

Schematic geometry of jets in Glasma

 $^*\hat{q}_{
m peak}pprox 25\,{
m GeV}^2/{
m fm}$ with weak dependence on particle (m or initial $p^x)$ but affected by Glasma (Q_s)

Jet momentum broadening

Schematic geometry of jets in Glasma

Early larger peak* in \hat{q}

 ${}^{*}\hat{q}_{
m peak}pprox 25\,{
m GeV}^2/{
m fm}$ with weak dependence on particle (m or initial p^x) but affected by Glasma (Q_s)

This is plausible!

* Bottom-up thermalization scenario

Recall Kirill Boguslavski's plenary @ Monday, see Jarkko Peuron's talk @ Wednesday Moreover, see Marcos González Martínez's talk @ Wednesday

This work:

Numerical solver for hard probes in Glasma $\langle \delta p^2 \rangle \Rightarrow d \langle \delta p^2 \rangle / d\tau \mapsto \kappa \text{ or } \hat{q} \text{ large and peaked}, \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$ Effect of τ_{form} , m and $p_T(\tau_{\text{form}})$

> Work in progress: Behavior of $\langle \delta p^2 \rangle \rightsquigarrow$ Glasma field correlators $Q \overline{Q}$ angular correlations in Glasma

Improvements:

Jet energy loss Hard probes in 3+1D Glasma

This work:

Numerical solver for hard probes in Glasma $\langle \delta p^2 \rangle \Rightarrow d \langle \delta p^2 \rangle / d\tau \mapsto \kappa \text{ or } \hat{q} \text{ large and peaked}, \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$ Effect of τ_{form} , m and $p_T(\tau_{\text{form}})$

 $\begin{array}{c} \mbox{Work in progress:}\\ \mbox{Behavior of } \langle \delta p^2 \rangle \rightsquigarrow \mbox{Glasma field correlators}\\ Q \overline{Q} \mbox{ angular correlations in Glasma} \end{array}$

Improvements:

Jet energy loss Hard probes in 3+1D Glasma

This work:

Numerical solver for hard probes in Glasma $\langle \delta p^2 \rangle \Rightarrow d \langle \delta p^2 \rangle / d\tau \mapsto \kappa \text{ or } \hat{q} \text{ large and peaked}, \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$ Effect of τ_{form} , m and $p_T(\tau_{\text{form}})$

 $\begin{array}{c} \mbox{Work in progress:}\\ \mbox{Behavior of } \langle \delta p^2 \rangle \rightsquigarrow \mbox{Glasma field correlators}\\ Q \overline{Q} \mbox{ angular correlations in Glasma} \end{array}$

Improvements:

Jet energy loss Hard probes in 3+1D Glasma

Thank you!

Back-up

Synthesis of hard probes in initial stages

Features of the Glasma fields

- Relevant scale \rightarrow saturation momentum Q_s from DIS $\Rightarrow Q_s/g^2\mu$ [7]
- $lacksim {\sf Fields} \rightsquigarrow {\sf dilute}$ after $\delta au \simeq Q_s^+$
- Fields \rightsquigarrow correlation domains of transverse size $\delta x_T \simeq Q_s^{-1}$
- Anisotropic field configurations

- Relevant scale \rightarrow saturation momentum Q_s from DIS $\Rightarrow Q_s/g^2\mu$ [7]
- Fields \rightsquigarrow dilute after $\delta au \simeq Q_s^{-1}$
- Fields \rightsquigarrow correlation domains of transverse size $\delta x_T \simeq Q_s^{-1}$
- Anisotropic field configurations

- Relevant scale \rightarrow saturation momentum Q_s from DIS $\Rightarrow Q_s/g^2\mu$ [7]
- \blacktriangleright Fields \rightsquigarrow dilute after $\delta \tau \simeq Q_s^{-1}$
- Fields \rightsquigarrow correlation domains of transverse size $\delta x_T \simeq Q_s^{-1}$
- Anisotropic field configurations

Features of the Glasma fields

- Relevant scale \rightarrow saturation momentum Q_s from DIS $\Rightarrow Q_s/g^2\mu$ [7]
- Fields \rightsquigarrow dilute after $\delta au \simeq Q_s^{-1}$
- Fields \rightsquigarrow correlation domains of transverse size $\delta x_T \simeq Q_s^{-1}$
- Anisotropic field configurations

 $\label{eq:correlation} \mbox{Correlation domains of typical size $1/Q_s$} \mbox{Longitudinal electric fields correlated, magnetic fields exhibit anti-correlation}$

Figures from [2001.10001], [2009.14206]

Numerical implementation (technicalities)

Boost-invariant Yang-Mills equations for $A_i(\tau, \vec{x}_{\perp}, \vec{y})$ and $A_{\eta}(\tau, \vec{x}_{\perp}, \vec{y})$

Trace of a plaquette \mapsto gauge invariant Wilson lines on the lattice \leftrightarrow gauge links $U_{x,\mu} = \exp\{igaA_{\mu}(x)\}$ Wilson loops on lattice \leftrightarrow plaquettes $U_{x,\mu\nu} \equiv U_{x,\mu}U_{x+\mu,\nu}U_{x+\mu,\mu}^{\dagger}U_{x,\nu}^{\dagger}$

Glasma $\xrightarrow{\text{boost invariance}}$ transverse gauge links $U_i(\tau, \vec{x}_{\perp})$, while $A_\eta(\tau, \vec{x}_{\perp})$

Color rotation on the lattice (oversimplified)

Color charge $\xrightarrow{\text{evolved by}}$ color lattice rotation $Q(\tau) = \mathcal{U}(\tau, \tau_0) Q(\tau_0) \mathcal{U}^{\dagger}(\tau, \tau_0)$ particle Wilson line $\mathcal{U} \in SU(3) \leftrightarrow$ path-ordered exponential from Glasma gauge fields

Initial color charge $Q_0 = Q_0^a T^a$ constructed with fixed quadratic q_2 and cubic q_3 Casimirs

$$q_2(R) = Q_0^a Q_0^a, \quad q_3(R) = d_{abc} Q_0^a Q_0^b Q_0^c, \quad R \mapsto \text{representation}$$

Particle temporal Wilson line
$$\mathcal{U}(\tau, \tau_0) = \mathscr{P} \exp\left\{ ig \int_{\tau_0}^{\tau} d\tau' \frac{dx^{\mu}}{d\tau'} A_{\mu}(x^{\mu}) \right\}$$

Color rotation on the lattice (details)

In the Glasma, it simplifies to:

$$\mathcal{U}(\tau_{0},\tau) = \mathscr{P} \exp\left\{ ig \int_{\tau_{0}}^{\tau} d\tau' \mathcal{A}_{\tau}^{*} + ig \int_{\vec{x}_{\perp}(\tau_{0})}^{\vec{x}_{\perp}(\tau)} dx'^{i} A_{i}\left(\vec{x}_{\perp}'(\tau)\right) + ig \int_{\eta(\tau_{0})}^{\eta(\tau)} d\eta' \underbrace{\mathcal{A}_{\eta}\left(\vec{x}_{\perp}(\tau)\right)}_{\text{indep}(\eta')}\right)^{\mathcal{U}(\tau_{0},\tau_{0})}$$

Numerically: $\mathcal{U}(\tau_{n-1},\tau_{n}) \approx \exp\left\{ ig \int_{x_{n-1}}^{x_{n}} dx'^{i} A_{i}\left(x_{n}'\right) \right\} \times \underbrace{\exp\left\{ ig\delta\eta_{n}A_{\eta}(x_{n})\right\}}_{\equiv U_{x_{n},\hat{\eta}}(\tau_{n})}$

$$Q(\tau_n) = \mathcal{U}(\tau_{n-1}, \tau_n) \ Q(\tau_{n-1}) \ \mathcal{U}^{\dagger}(\tau_{n-1}, \tau_n) \text{ with } \mathcal{U}(\tau_{n-1}, \tau_n) = U_{\mathbf{x_{n-1}}, \hat{\mathbf{x}}} \cdot U_{\mathbf{x_{n-1}}, \hat{\boldsymbol{\eta}}}$$

Limiting cases

Static quarks $\langle \delta p^2 \rangle_{m \to \infty} \propto \langle EE \rangle_{\rm Glasma}$

Lightlike quarks $\langle \delta p^2 \rangle_{p^x \to \infty} \propto \langle \widetilde{F} \widetilde{F} \rangle_{\text{Glasma}}$

$\langle p^2 angle$ in limiting cases

Static heavy quark limit $m \to \infty \Rightarrow$ electric field correlators

$$\left\langle \delta p_i^2(\tau) \right\rangle_{\boldsymbol{m} \to \infty} = g^2 \int_0^{\tau} \mathrm{d}\tau' \int_0^{\tau} \mathrm{d}\tau'' \left\langle \mathrm{Tr}\left\{ E_i(\tau') E_i(\tau'') \right\} \right\rangle$$

Fast light-like jet quark limit $p^x \rightarrow \infty \Rightarrow$ electromagnetic field correlators

$$\left\langle \delta p_i^2(\tau) \right\rangle_{p^x \to \infty} = g^2 \int_0^\tau \mathrm{d}\tau' \int_0^\tau \mathrm{d}\tau'' \left\langle \mathrm{Tr}\left\{ \widetilde{F}_i(\tau') \widetilde{F}_i(\tau'') \right\} \right\rangle$$

Color force components $F_x \equiv E_x, F_y \equiv E_y - B_z, F_z \equiv E_z + B_y$, parallel transported

 $\widetilde{F}_{i}(\tau) \equiv \mathcal{U}_{x}^{\dagger}(\tau,\tau_{0})F_{i}(\tau)\mathcal{U}_{x}(\tau,\tau_{0}) \text{ with Wilson lines } \mathcal{U}_{x}(\tau,\tau_{0}) = \mathscr{P}\exp\left(-\mathrm{i}g\int_{0}^{\tau}\mathrm{d}\tau' A_{x}(\tau')\right)$

