

11th International Conference on Hard and Electromagnetic Probes of High-Fnergy Nuclear Collisions

Disentangling centrality bias and final state effects on high $p_T \pi^0$ using direct γ in d+Au at 200 GeV

Axel Drees, Hard Probes 2023, March 2023, Aschaffenburg, Germany

- Introduction
 - Challenges measuring final state effects for high $p_T \pi^0$ in small systems
 - **Resolution using direct photons to scale hard scattering processes**
- New results from final PHENIX run in 2016 arXiv:2303.12899
 - Previously observed enhancement in peripheral collisions due to event selection bias
 - Final state suppression of 20% in central 0-5% d+Au collisions
- Summary/Outlook

* Stony Brook University

Challenges to Identify Final State Effects in Small Systems

Nuclear modification factor:

$$R_{AB}(p_T) = \frac{Y_{AB}(p_T)}{\langle N_{coll} \rangle Y_{pp}(p_T)}$$

PHENIX: PRC 105 (2022) 064902

- Central: 20% suppression consistent with energy loss
- Peripheral: 15 % enhancement unexplained, likely due to selection bias

• Similar observations at RHIC & LHC

Inconclusive R_{xA} for high p_T in small systems Bias or final state effects?

PHENIX

Mapping Event Activity to Centrality With Glauber Model

PHENIX: PRC90 (2014) 034902

• Procedure for small systems

- Measure event activity (N_{ch}) in BBC on Au going side
- Fit event activity to superposition of negative binomial distributions for each nucleon-nucleon collision
- Select events in percentiles of event activity (0-5%, 5-10%, etc.) for data & model
- Assign N_{coll} from model to data

Bias in Event Activity from Hard Scattering

- **Reduced forward event activity in** nucleon-nucleon collision with hard scattering
 - **Averaged out in Au+Au collisions**
 - **High p_T events shifted to lower EA and** lower \hat{N}_{coll} in small systems
 - Increases R_{AB} in peripheral events, probably p_T dependent

Bias in event selection for hard probes in small systems

* Stony Brook University

Use Direct Photons to Minimize Selection Bias

- No nuclear modification of direct γ
 - Au+Au direct γ scale with N_{coll}

$$R_{AB}^{\gamma^{dir}}(\boldsymbol{p}_{T}) = \frac{Y_{AB}^{\gamma^{dir}}(\boldsymbol{p}_{T})}{N_{coll} Y_{pp}^{\gamma^{dir}}(\boldsymbol{p}_{T})} \sim 1$$

Use direct γ to measure factor "N_{coll}" to scale hard scattering processes

$$N_{coll}^{EXP} = \frac{Y_{AB}^{\gamma^{dir}}(p_T)}{Y_{pp}^{\gamma^{dir}}(p_T)}$$

Redefine Nuclear Modification Factor

$$R_{AB,EXP}^{\pi^{0}}(p_{T}) = \frac{Y_{AB}^{\pi^{0}}(p_{T})}{Y_{pp}^{\pi^{0}}(p_{T})} \times \frac{Y_{pp}^{\gamma^{dir}}(p_{T})}{Y_{AB}^{\gamma^{dir}}(p_{T})} = \frac{(\gamma^{dir}/\pi^{0})^{pp}}{(\gamma^{dir}/\pi^{0})^{AB}}$$

- Insensitive to event selection bias
- No Glauber model dependence

* Stony Brook University

- Largely insensitive to CNM effects
- Partially accounts for p_T dependent bias
- Many systematic uncertainties cancel

PHENIX: PRL109 (2012) 152302

=200 GeV

Search for final state effects simultaneous measure direct γ and π^0

PH ENIX

High $p_T \pi^0$ and γ from d+Au at 200 GeV

- Data set 2016 d+Au at 200 GeV
 - Taken with EMCal trigger
 - Corresponding to 50 nb⁻¹
 - π^0 and γ momentum range $p_T > 7.5$ GeV/c
- Analysis of PHENIX EMCal data
 - Reconstruct γ showers and $\pi^0 \rightarrow \gamma \gamma$
 - Correct π^0 spectrum
 - Model hadron decay γ showers in PHENIX
 - Subtract from γ showers raw γ^{dir}
 - Correct γ^{dir} spectrum
- Systematic Uncertainties
 - ~ 12% for π^0 and γ^{dir} (energy scale 8% and detector material 7%)
 - Reduce to 6% in γ^{dir}/π^0 ratio
 - Uncertainty on γ^{dir}/π^0 common to all centrality selection

γ^{dir} and π^0 Yields from d+Au and p+p at 200 GeV

- High $p_T \gamma^{dir}$ (7.5 < pt < 18 GeV/c)
 - First centrality selected data from d+Au
 - min. bias d+Au data consistent with 2003 data: PHENIX:PRC87(2013)54907
 - **p+p reference from:** *PHENIX:PRD86(2012)72008*

PHENIX

- High $p_T \pi^0$ (7.5 < pt < 18 GeV/c)
 - **d+Au data from 2016 consistent with 2008 data:** *PHENIX:PRC(2022)64902*
 - **p+p reference data from:** *PHENIX:PRC(2022)64902*

γ^{dir} to π^0 Ratio in d+Au and p+p Collisons

 $\gamma^{\text{dir}}/\pi^0$ for inclusive samples (0-100%) • $\gamma^{\rm dir}/\pi^0$ for different centrality Equal for p+p to d+Au Peripheral events consistent with min. bias p+p systematic dominated by 2003 γ^{dir} data 0-5% visibly larger γ^{dir}/π^0 $\gamma^{\text{dir}/\pi^0}$ 0.6⊢ d+Au √s = 200 GeV, |y|<0.35 d+Au √s = 200 GeV, |y|<0.35 0.5 d+Au 00-05% d+Au 05-10% d+Au 10-20% ▲ d+Au 0-100% 0.4 d+Au 20-40% 0.4 d+Au 40-60% p+p d+Au 60-88% 0.3 0.3 0.2 0.2 0.1 0.1 0 12 10 12 8 10 14 16 8 16 14 p_{_} (GeV/c) p_{_} (GeV/c)

> No or similar modification of γ^{dir}/π^0 for most d+Au selections Different modification for 0-5% central d+Au

Stony Brook University

Evaluating Bias in *N*^{*GL*}*coll* **from Glauber Model**

Determine scaling factor N_{coll}^{EXP} from γ^{dir}

- **Independent** of **p**_T for 7.5 to 18 GeV/c
- N_{coll}^{EXP} and N_{coll}^{GL} consistent within scale uncertainties

0.9 $d+Au \sqrt{s_{NN}} = 200 \text{ GeV}$ 0.8 4 6 8 10 12 14 16 18 N^{EXP} 2 Visible trend in N_{coll}^{EXP} and N_{coll}^{GL} 0 with centrality within common scale uncertainties

00

- **Good agreement in central collisions within 5%**
- 15% deviation in peripheral collisions

Bias in event selection: Event activity reduced in presence of hard scattering

Nuclear Modification Factor for π^0 in inclusive d+Au

PH

- Redefined $R_{dAu,EXP}^{\pi^0}(p_T)$
 - No significant p_T dependence
 - **Average value:** ٩ $R_{dAu,EXP}^{\pi^0}(p_T) = 0.92 \pm 0.02 \pm 0.15$
 - **Consistent with unity within 16% scale uncertainty**
 - **Consistent with 5% enhancement from CNM effects***

Small or no final state modification in inclusive d+Au

* From Arleo et al: CNM effects largely cancel in γ^{dir}/π^0 ratio in this p_T range

Centrality Dependence of $R_{dAu,EXP}^{\pi^0}(p_T)$

$$R_{dAu,EXP}^{\pi^{0}}(p_{T}) = \frac{Y_{dAu}^{\pi^{0}}(p_{T})}{Y_{pp}^{\pi^{0}}(p_{T})} \times \frac{Y_{pp}^{\gamma^{dir}}(p_{T})}{Y_{dAu}^{\gamma^{dir}}(p_{T})} = \frac{(\gamma^{dir}/\pi^{0})^{pp}}{(\gamma^{dir}/\pi^{0})^{dAu}} \quad \text{PH} \in \mathbb{N} \mathbb{I} X$$

Peripheral d+Au collisions

 $R_{dAu,EXP}^{\pi^0}(p_T) = 0.94 \pm 0.05 \pm 0.16$

- Consistent with inclusive d+Au sample
- Central d+Au collisions

 $R_{dAu,EXP}^{\pi^0}(p_T) = 0.75 \pm 0.03 \pm 0.13$

- Clear suppression of π^0 yield
- About 20% relative to inclusive sample

Suppression of π^0 in central 0-5% d+Au

Centrality Dependence of $R_{dAu,EXP}^{\pi^{0}}$

Summary and Outlook

• Key results:

- First evidence for significant 20% final state suppression of high $p_T \pi^0$ (7.5 to 18 GeV/c) in central 0-5% d+Au collisions
- Previously observed enhancement of π^0 in peripheral events due to an event selection bias
- New method to measure effective N_{coll}^{Exp} :
 - Ratio of γ^{dir} in sample to that in p+p
 - Resolves ambiguity between final state effect CNM effect event selection bias inherent to Glauber model approach

Further ongoing investigations:

- Size dependence of final state effect: p+Au < d+Au < ³He+Au ???
- **Reduce systematic uncertainty on** γ^{dir}/π^0 from p+p

Backup

Comparison to ALICE limit from Jets

ALICE: PRL109 (2012) 152302

- p+Pb at 5.02 TeV with 0-20% EA
- for charged jet $p_T > 15 \text{ GeV/c}$
- **ΔE move outside of R=0.4 cone in recoil jet < 0.4 GeV at 90% CL**
- * Stony Brook University

- **PHENIX** π^0 suppression in 0-5% d+Au
 - Assume π^0 is leading particle
 - Use momentum loss δp_T estimate from *PHENIX:PRC93(2016)24911*
 - 20% suppression relative to 0-100%
 - momentum shift $\delta p_T \sim 0.2 \text{ GeV/c}$

Energy Loss in Small Systems?

* Stony Brook University

Evidence for QGP Droplets in Small Systems

nature