

### **Thermal radiation and direct photon production** in Pb—Pb and pp collisions with dielectrons in ALICE Raphaelle Bailhache for the ALICE Collaboration





### Motivation



### $\rightarrow$ Unique probe of the hot-medium properties

e<sup>-</sup>

Raphaelle Bailhache, Goethe-University Frankfurt





# **Motivation for dielectrons**

Virtual photons ( $\gamma^* \rightarrow e^+e^-$ ) carry mass ( $m_{ee}$ ):

- Can serve as an approximate clock  $\rightarrow$  Separate different stages of the collision
- Radiation from hot-hadronic matter Sensitive to in-medium spectral function of  $\rho$  meson
- Invariant mass not affected by radial flow
  - → Access to average QGP temperatures without blue-shift









# **Motivation for dielectrons**

Virtual photons ( $\gamma^* \rightarrow e^+e^-$ ) carry mass ( $m_{ee}$ ):

- Can serve as an approximate clock  $\rightarrow$  Separate different stages of the collision
- Radiation from hot-hadronic matter Sensitive to in-medium spectral function of  $\rho$  meson
- Invariant mass not affected by radial flow
  - $\rightarrow$  Access to average QGP temperatures without blue-shift

### **But:**

- Small production cross section (additional  $\alpha_{\rm em}$  factor)
- Large combinatorial and physical backgrounds lacksquarein particular from correlated heavy-flavour (HF) hadron decays









## **ALICE results from Run 2**

Raphaelle Bailhache, Goethe-University Frankfurt







# **Dielectron production in pp at** $\sqrt{s} = 13 \text{ TeV}$



#### • Full statistics of Run 2 data

- 30 nb<sup>-1</sup> minimum bias (MB) collisions
- 6.1 pb<sup>-1</sup> high multiplicity 0-0.1% (HM) collisions
- $\rightarrow$  4 times more data compared to previous publication

PLB 788 (2019) 505

#### Described by cocktail of known hadron decays

based on measured neutral mesons

- At the same energy
- In the same multiplicity class

See poster 109. by Joshua Koeníg



### Minimum bias pp collisions







# **Extraction of direct-photon fraction** r

#### Direct photons in pp collisions

- Important baseline for Pb—Pb studies
- Search for possible thermal radiation in HM pp events

# • Extract direct-photon fraction $r \left( = \frac{\gamma_{\text{dir}}^*}{\gamma_{\text{inc}}^*} \right|_{m_{\text{ee}} \to 0}$

by fitting the  $m_{ee}$  distribution above the pion mass:

$$f_{\rm fit} = (1 - r) \times f_{\rm LF} + r \times f_{\rm dir} + f_{\rm HF}$$

$$ight flavow flavo$$

 $\rightarrow$  Suppress  $\pi^0$  background compared to real  $\gamma$ 



#### Fit of $m_{ee}$ spectra



Kroll-Wada formula for direct  $\gamma^*$  contributions: N.M. Kroll and Walter Wada, Phys. Rev. 98 (1955) 1355





# **Direct-photon fraction in pp at** $\sqrt{s} = 13 \text{ TeV}$

#### **MB pp collisions**



- Significant reduction of both stat. and syst. uncertainties compared to previous ALICE paper [1]
- Similar direct photon fraction in MB and HM pp collisions  $\bullet$ 
  - Understand the direct-photon yield vs  $dN_{ch}/d\eta$  from small to large systems
  - Search for onset of thermal radiations in small systems

Raphaelle Bailhache, Goethe-University Frankfurt

#### HM pp collisions



Low mass dielectron meaurements with ALICE

[1] PLB 788 (2019) 505 **8** 

![](_page_7_Picture_15.jpeg)

![](_page_7_Picture_16.jpeg)

![](_page_7_Picture_17.jpeg)

![](_page_8_Figure_1.jpeg)

Data compared to hadronic cocktail based on  $N_{\rm coll}$  -scaled heavy-flavour (HF) measurement in pp [1]

- Hint for an excess at  $m_{\rm ee} < 0.5 \,{\rm GeV}/c^2$
- Extract direct-photon fraction r as in pp at very low  $m_{ee}$

#### [1] PRC 102 (2020) 055204

Raphaelle Bailhache, Goethe-University Frankfurt

**Dielectron production in central Pb**-Pb at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 

![](_page_8_Figure_9.jpeg)

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

- First direct γ measurement in 0-10% Pb-Pb collisions at 5.02 TeV
  - $\gamma^{inc}$  measured with photon conversion method
  - $\gamma^{\text{direct}} = r \times \gamma^{\text{inc}}$ , *r* from dielectron analysis
- A hint of an excess above pQCD

**Direct photon in central Pb**-Pb at  $\sqrt{s}_{NN} = 5.02 \text{ TeV}$ 

![](_page_9_Figure_8.jpeg)

Low mass dielectron meaurements with ALICE See talk 46. by Ana Marín for real  $\gamma$ 

![](_page_9_Picture_10.jpeg)

- First direct γ measurement in 0–10% Pb–Pb collisions at 5.02 TeV
  - $\gamma^{inc}$  measured with photon conversion method
  - $\gamma^{\text{direct}} = r \times \gamma^{\text{inc}}$ , *r* from dielectron analysis
- A hint of an excess above pQCD
- Theoretical models consistent with data although at the upper edge of the syst. unc. at low  $p_{\rm T}$

C.Gale et al.: EM radiation from all stages including pre-equilibrium H.Van Hees et al.: thermal radiation from QGP + hadronic many body system O.Linnyk et al.: direct photons in microscopic transport model P.Dasgupta et al.: thermal photons with fluctuations in the initial stage

Raphaelle Bailhache, Goethe-University Frankfurt

Low mass dielectron meaurements with ALICE See talk 46. by Ana Marín for real  $\gamma$ 

**Direct photon in central Pb**-Pb at  $\sqrt{s}_{NN} = 5.02 \text{ TeV}$ 

![](_page_10_Figure_10.jpeg)

![](_page_10_Picture_11.jpeg)

![](_page_10_Figure_12.jpeg)

## **Dielectron in Pb—Pb: modified heavy-flavour contribution**

#### **Dielectron studies at higher** $m_{ee}$

 $N_{\rm coll}$ -scaled HF cocktail at the upper edge of the data syst. unc. in the IMR

 $\rightarrow$  HF known to be modified in Pb—Pb

**Construct modified heavy-flavour cocktail** based on measurements of single heavy-flavour hadron decay electrons

![](_page_11_Figure_5.jpeg)

ALI-PUB-327779

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_11_Figure_9.jpeg)

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_11.jpeg)

## **Dielectron in Pb—Pb: modified heavy-flavour contribution**

#### **Dielectron studies at higher** *m*<sub>ee</sub>

 $N_{\rm coll}$ -scaled HF cocktail at the upper edge of the data syst. unc. in the IMR

 $\rightarrow$  HF known to be modified in Pb-Pb

**Construct modified heavy-flavour cocktail** based on measurements of single heavy-flavour hadron decay electrons

→ Description of the data improved but additional uncertainties introduced

![](_page_12_Figure_8.jpeg)

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

## **Dielectron excess in Pb--Pb**

Dielectron excess (data - cocktail) using  $N_{coll}$ -scaled or modified HF contribution

Compared with two different predictions for thermal radiation R.Rapp: fireball and hadronic many body system pHSD: transport model

Possible QGP contribution not resolvable within systematic (and statistical) uncertainties

#### $\rightarrow$ Require a cocktail-independent approach !

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_13_Picture_7.jpeg)

![](_page_13_Figure_8.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_13_Picture_22.jpeg)

# **Topological separation of dielectron sources**

**Distance-of-closest approach to primary vertex** 

$$DCA_{ee} = \sqrt{\frac{DCA_1^2 + DCA_2^2}{2}}$$

DCA<sub>i</sub> normalised to its resolution

Allow separation of prompt and delayed  $e^+e^-$  sources  $DCA_{ee}(prompt) < DCA_{ee}(c\bar{c} \rightarrow e^+e^-) < DCA_{ee}(b\bar{b} \rightarrow e^+e^-)$ 

Raphaelle Bailhache, Goethe-University Frankfurt

Low mass dielectron meaurements with ALICE

![](_page_14_Figure_7.jpeg)

### $c\tau \approx 150 \ (450) \ \mu \mathrm{m}$ for charm (beauty) hadrons

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

# First DCA<sub>ee</sub> analysis in Pb–Pb

Extraction of prompt thermal signal via fits of measured  $DCA_{ee}$  distributions in the IMR

- Beauty contribution fixed via separate fit at high DCA<sub>ee</sub>  $b\bar{b}: 0.74 \pm 0.24$  (stat.)  $\pm 0.12$  (syst.) x  $N_{coll}$  scaling
- Simultaneous fit of charm and prompt contribution:  $c\bar{c}: 0.43 \pm 0.40$  (stat.)  $\pm 0.22$  (syst.) x  $N_{coll}$  scaling prompt:  $2.64 \pm 3.18$  (stat.)  $\pm 0.29$  (syst.) x thermal R. Rapp

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

### Fit of $DCA_{ee}$ spectrum in the IMR

![](_page_15_Figure_9.jpeg)

See poster 270. by Jerome Jung

![](_page_15_Picture_12.jpeg)

# First DCA<sub>ee</sub> analysis in Pb–Pb

Extraction of prompt thermal signal via fits of measured  $DCA_{ee}$  distributions in the IMR

- Beauty contribution fixed via separate fit at high DCA<sub>ee</sub>  $b\bar{b}: 0.74 \pm 0.24$  (stat.)  $\pm 0.12$  (syst.) x  $N_{coll}$  scaling
- Simultaneous fit of charm and prompt contribution:  $c\bar{c}: 0.43 \pm 0.40$  (stat.)  $\pm 0.22$  (syst.) x  $N_{coll}$  scaling prompt:  $2.64 \pm 3.18$  (stat.)  $\pm 0.29$  (syst.) x thermal R. Rapp
- Results in agreement with:
  - Heavy-flavour suppression
  - Thermal contribution in the order of R. Rapp predictions
  - $\rightarrow$  Looking forward to Run 3 to improve precision

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

### Fit of $DCA_{ee}$ spectrum in the IMR

![](_page_16_Figure_13.jpeg)

See poster 270. by Jerome Jung

![](_page_16_Picture_16.jpeg)

### Run 3 started already...

Raphaelle Bailhache, Goethe-University Frankfurt

Low mass dielectron meaurements with ALICE

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_5.jpeg)

# **ALICE in Run 3**

![](_page_18_Picture_1.jpeg)

#### [1] CERN-LHCC-2013-020, CERN-LHCC-2015-002

Raphaelle Bailhache, Goethe-University Frankfurt

Low mass dielectron meaurements with ALICE

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

- $\rightarrow$  Continuous read-out
- $\rightarrow$  Larger data acquisition rate (up to 1000 in pp and 100 in Pb-Pb)

![](_page_18_Figure_9.jpeg)

ALI-PERF-537337

![](_page_18_Picture_11.jpeg)

# **ALICE in Run 3**

![](_page_19_Picture_1.jpeg)

#### [1] CERN-LHCC-2013-020, CERN-LHCC-2015-002 [2] CERN-LHCC-2012-013

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

### New GEM based TPC read-out chambers [1]

- $\rightarrow$  Continuous read-out
- $\rightarrow$  Larger data acquisition rate (up to 1000 in pp and 100 in Pb-Pb)

### **New Inner Tracking System (ITS2)** [2]

- $\rightarrow$  Less material
- $\rightarrow$  Better pointing resolution (x 3 in  $r\varphi$ , x 6 in z)

![](_page_19_Figure_13.jpeg)

![](_page_19_Picture_14.jpeg)

![](_page_19_Picture_16.jpeg)

![](_page_19_Picture_17.jpeg)

# First look at dielectron with Run 3

![](_page_20_Picture_1.jpeg)

- Raw dielectron  $m_{ee}$  spectrum in pp collisions at  $\sqrt{s} = 13.6 \,\mathrm{TeV}$  $\rightarrow$  Clear  $\omega, \phi, J/\psi$  peaks
- Data collected in two days Similar number of events as for full Run 2 data set
- Similar signal-to-background as in Run 2

### See poster 84. by Florian Eisenhut

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_20_Picture_8.jpeg)

New

![](_page_20_Figure_10.jpeg)

#### Low mass dielectron meaurements with ALICE

# First look at dielectron with Run 3

![](_page_21_Figure_1.jpeg)

- Normalised raw dielectron  $DCA_{ee}$  spectra in pp collisions at  $\sqrt{s} = 13.6 \,\text{TeV}$
- Low  $m_{ee}$ : dominated by prompt  $\pi^0$  dalitz decays
- Intermediate m<sub>ee</sub>: dominated by non-prompt HF decays
- $\rightarrow$  Improved separation power compared to Run 2  $\rightarrow$  Work on going to include DCA in z direction

### See poster 84. by Florian Eisenhut

![](_page_21_Picture_9.jpeg)

![](_page_21_Figure_10.jpeg)

![](_page_21_Figure_11.jpeg)

Low mass dielectron meaurements with ALICE

![](_page_22_Picture_0.jpeg)

#### **Dielectron measurements with full Run 2 statistics:**

- Similar direct-photon fraction observed in MB and HM pp collisions at  $\sqrt{s} = 13 \, {
  m TeV}$  $\bullet$
- In central Pb–Pb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV: lacksquare
  - Direct-photon measurement described by state-of-the-art models although at the upper edge of the syst. unc. Understanding of heavy-flavour background crucial at the LHC

 $\rightarrow$  Tools developed to allow measurement of thermal radiation from the QGP

#### **First look into Run 3 data promising**

See talk 46. by Ana Marín for ALICE real y results See posters 109. by Joshua Koeníg, 270. by Jerome Jung and 84. by Florían Eísenhut

Raphaelle Bailhache, Goethe-University Frankfurt

Low mass dielectron meaurements with ALICE

### Summary

![](_page_22_Picture_12.jpeg)

![](_page_23_Picture_0.jpeg)

Raphaelle Bailhache, Goethe-University Frankfurt

Low mass dielectron meaurements with ALICE

Back-up

![](_page_23_Picture_4.jpeg)

# **Dielectron production in pp at** $\sqrt{s} = 13 \text{ TeV}$

#### • Full statistics of Run 2 data

- 30 nb<sup>-1</sup> minimum bias (MB)
- 6.1 pb<sup>-1</sup> high multiplicity 0-0.1% (HM)
- $\rightarrow$  4 times more data compared to previous publication

### Described by cocktail of known hadron decays

based on measured neutral mesons

- At the same energy
- In the same multiplicity class

See poster 109 by Joshua Koeníg

![](_page_24_Picture_12.jpeg)

![](_page_24_Figure_13.jpeg)

![](_page_24_Picture_15.jpeg)

![](_page_24_Picture_16.jpeg)

# DCA<sub>ee</sub> analysis in Pb–Pb

First DCA<sub>ee</sub> analysis in Pb–Pb at  $\sqrt{s_{NN}} = 5.02$  TeV

Comparison to N<sub>coll</sub>-scaled cocktail:

- Beauty dominates the spectrum at high DCA<sub>ee</sub>
- Charm more prominent at low DCA<sub>ee</sub>
- → Data below HF expectation

→ Clear indication of HF suppression

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_25_Figure_10.jpeg)

![](_page_25_Picture_12.jpeg)

![](_page_25_Picture_13.jpeg)

![](_page_25_Picture_14.jpeg)

# **ALICE in Run 3**

![](_page_26_Picture_1.jpeg)

#### [1] CERN-LHCC-2013-020, CERN-LHCC-2015-002 [2] CERN-LHCC-2012-013

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_26_Picture_5.jpeg)

### **New GEM based TPC read-out chambers** <sup>[1]</sup>

- $\rightarrow$  Continuous read-out
- $\rightarrow$  Larger data acquisition rate (up to 1000 in pp and 100 in Pb-Pb)

### **New Inner Tracking System (ITS2)** [2]

- $\rightarrow$  Less material
- $\rightarrow$  Better pointing resolution (x 3 in  $r\varphi$ , x 6 in z)

![](_page_26_Figure_12.jpeg)

![](_page_26_Picture_15.jpeg)

![](_page_26_Picture_16.jpeg)

# **ALICE in Run 3**

![](_page_27_Picture_1.jpeg)

Raphaelle Bailhache, Goethe-University Frankfurt

![](_page_27_Picture_4.jpeg)

### New GEM based TPC read-out chambers

- $\rightarrow$  Continuous read-out
- $\rightarrow$  Larger data acquisition rate (up to 1000 in pp and 100 in Pb-Pb)

### **New Inner Tracking System (ITS2)**

- $\rightarrow$  Less material
- $\rightarrow$  Better pointing resolution (x 3 in  $r\varphi$ , x 5 in z)

### New online-offline system (O2)

 $\rightarrow$  Online Processing of all events

![](_page_27_Picture_14.jpeg)

![](_page_27_Picture_15.jpeg)