Direct-photon production and HBT correlations in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 (2.76) TeV with the ALICE experiment

A. Marin for the ALICE Collaboration

Motivation: Direct photons

Carry information on the medium's temperature and space-time evolution. Large background from neutral meson decays ($\pi^0, \eta, \omega, ...$).

Prompt photons: <u>F. Jonas, talk 74</u>

- Dominant at high $p_T (p_T > 5 \text{ GeV}/c)$, power-law shape
- Initial hard scattering
- Described by NLO pQCD

Pre-equilibrium photons:

• Sensitive to the saturation momentum

Jet-medium interactions:

• Scattering of hard partons with thermalized partons

Thermal photons:

- Dominant at low $p_T (p_T < 3 \text{ GeV}/c)$ with exponential shape
- Emitted by thermalized medium
- Comparison to models employing hydrodynamics

Direct Photons

Courtesy: Chun Shen

jet in-medium bremsstrahlung prompt photons jet-plasma photons photons Hadron gas phase QGP phase verlap zone pre-equilibrium photons thermal radiation

Measurement of inclusive photons

EMCal/DCal: sampling calorimeter

- 10 modules at 4.4 m from ALICE IP. EMCal:
- |η|<0.7, 80°<φ<187°.
- DCAL:
- 0.22<|η|<0.7, 260°< φ <320° |η|<0.7, 320°< φ <327°

PHOS: homogeneous calorimeter

PbWO₄ crystal

- 3 modules at 4.6 m from ALICE IP
- |η|<0.12, 260°<φ<320°

J. Lühder, poster 52

N. Stangmann, poster 105

J. Koenig, poster 109

$$R_{\gamma} = \frac{\gamma_{inc}}{\pi^{0}} / \frac{\gamma_{decay}}{\pi^{0}_{param}} \sim \frac{\gamma_{inc}}{\gamma_{decay}}$$

Photon conversion method (PCM):

Photon conversion in detector material ITS and TPC $|\eta| < 0.9$, R < 180 cm, 0°< φ <360°, X/X₀=11.4±0.5 sys %

10-15% low p_T direct photon excess at LHC energies 6% uncertainty, largest contribution: 4.5% sys X/X_0

Can this uncertainty be reduced? \rightarrow Improve R_{γ} uncertainty

Data-driven precision determination of the material budget in ALICE MC: Monte Carlo

arxiv: 2303.15317

Reduce X/X_0 systematic uncertainty: 4.5% \rightarrow 2.5% Mitigate local imperfections in X/X_0 implementation in simulations

NEW

RD: Real Data

R_{γ} : γ_{inc} , neutral mesons and decay photons

$$R_{\gamma} = N_{\gamma, \text{inc}} / N_{\gamma, \text{dec}} \approx \left(\frac{N_{\gamma, \text{inc}}}{\pi^0}\right)_{\text{meas}} / \left(\frac{N_{\gamma, \text{dec}}}{\pi^0}\right)_{\text{sim}}$$

 $N_{\gamma,\text{dir}} = N_{\gamma,\text{inc}} - N_{\gamma,\text{dec}} = (1 - \frac{1}{R_{\gamma}}) \cdot N_{\gamma,\text{inc}}$

Direct photon signal if $R_{\gamma} > 1$

Measure π⁰ and η via γγ decay
Simulation of π⁰, η, ω, η' decays into γ

NEW Direct photon R_{γ} in Pb – Pb at $\sqrt{s_{NN}}$ = 2.76 TeV

Combination of PCM (2011) with Ω_i + PHOS (2010)

In agreement with published results New centrality available: 0-10% Smaller uncertainties

 $R_v = \frac{\gamma_{inc}}{0}/$

Significant excess for $p_T > 1 \text{ GeV}/c$

• 0-10%: 3.1 σ (1.0 GeV/c < p_T < 1.8 GeV/c)

Y decay

Yinc

• 20-40%: 3.4 σ (1.0 GeV/*c* < *p*_T < 2.3 GeV/*c*)

Low p_T : thermal radiation High p_T : prompt photons

NEW QGP thermal emission: Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV $N_{\alpha} dir = (1 - \frac{1}{D}) \cdot N_{\alpha}$ inc

- Excess beyond known prompt yield $1 < p_T < 4$ GeV/c
- Models that include thermal +(pre-equilibrium) + prompt photons are able to describe the data
- Not yet possible to discriminate among different models

QGP thermal emission: Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

- At low p_T :
 - R_{γ} is close to 1 \rightarrow small thermal contribution
- For p_T > 2-3 GeV/c: Excess → pre-equilibrium and prompt photons
- Data consistent with NLO pQCD calculation of prompt photons x T_{AA} Calculation by W. Vogelsang, using PDF: CT14, FF: GRV
- Thermal+ pre-equilibrium photons + prompt photon: R_γ~ 1.05 → Better data description better than with only prompt photons
 IP-Glasma initial conditions + KØMPØST+ MUSIC viscous hydrodynamics , prompt γ PDF:nCTEQ15-np, FF: BFG-II

Bands represent (theoretical and) experimental uncertainties

ALICE

 γ_{inc}

l decay

 $R_{\gamma} = \frac{\gamma_{inc}}{2}/2$

QGP thermal emission: Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

R. Bailhache, talk 44

$$N_{\gamma,\mathrm{dir}} = \left(1 - \frac{1}{R_{\gamma}}\right) \cdot N_{\gamma,\mathrm{inc}}$$

- Upper limits (90% CL) given where $N_{\gamma,\text{dir}}$ consistent with 0
- Different model calculations of direct photons:
 - Microscopic transport approach (PHSD)
 - Relativistic hydrodynamic, different initial conditions, thermalization times, hadronization temperatures, with and without pre-equilibrium γ
- At high p_T consistent with pQCD
- Not yet possible to favor a model over the other

Expect more precise results with the full Run 2 data and Run 3

ALICE

NEW Direct photon puzzle in yields?

Ratio between direct photon production and their respective state-of the-art model calculation

Good agreement between ALICE data and model predictions Slight tension at low p_T for the PHENIX data Future: puzzle involving direct photon flow?

Integrated direct photon yield vs dN_{ch}/dη

- Integrated direct photon yield $(1 < p_T < 5 \text{ GeV}/c)$ vs $dN_{ch}/d\eta$
- ALICE data points follow similar trend as observed in PHENIX and STAR experiments and as predicted by hydro model

Universal power-law scaling of direct γ yield vs N_{ch} seen for different systems and collision energies

R. Bailhache, talk 44

T_{eff} from non-prompt photons

Non-prompt γ = direct γ – T_{AA} . pQCD

is $T_{eff} (2.1 < p_T < 4 \text{ GeV/}c) > T_{eff} (1.1 < p_T < 2.1 \text{ GeV/}c)$?

pre-equilibrium photons? earlier time emission?

Bose-Einstein $\gamma\gamma$ correlations in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

HBT interferometry (two-particle correlations) Space – time dimensions of emitting source

Correlation function:

 $\gamma_{\text{PHOS}}\text{-}\gamma_{\text{PCM}}$

 $C(Q_{inv}) = A(Q_{inv})/B(Q_{inv})$

Bins of k_{T} (average pair momentum) and centrality

Small hint of a HBT-like effect at lower Q_{inv}

$$C(Q_{\text{inv}}) = 1 + \lambda_{\text{inv}} exp(-R_{\text{inv}}^2 Q_{inv}^2)$$

Bose-Einstein $\gamma\gamma$ correlations in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

Sensitive to the source size and to the direct photon fraction

$$C(Q_{\mathrm{inv}}) = 1 + \lambda_{\mathrm{inv}} exp(-R_{\mathrm{inv}}^2 Q_{inv}^2)$$

 λ_{inv} not significantly different from zero

$$r_{\gamma} = rac{N_{
m dir}}{N_{
m inc}} = \sqrt{2\lambda}$$

WA98, PRL 93,022301 (2004)

Ongoing: Measurements performed in the LCMS

Summary

- Direct photon production in Pb-Pb collisions with improved X/X₀ uncertainties
 - at $\sqrt{s_{\rm NN}}$ = 2.76 TeV
 - Significant excess for $p_T > 1 \text{ GeV}/c$
 - T_{eff} as function of $dN_{ch}/d\eta$ extracted in two p_T ranges. Consistent values at similar $dN_{ch}/d\eta$
 - at $\sqrt{s_{\rm NN}}$ = 5.02 TeV
 - Significant excess of prompt photons at $p_T > 3 \text{ GeV}/c$
 - R_{γ} at lower p_T consistent with unity

Integrated direct γ yields follow power law scaling with dN_{ch}/d η

Model calculations consistent with the data, no yet possible to discriminate

- Photon HBT provides a complementary method to obtain R_{γ} , and possibly the source size
- Stay tuned for results with full Run 2 statistics and Run 3 data

Thank you

Backup slides

arxiv: 2303.15317

Data-driven precision determination of the material budget in ALICE

Ω_i _	$\epsilon_{\gamma,gas}^{RD}$	×	$\varepsilon_{\text{track}}^{\text{MC}}$
ω_i	$\epsilon^{\mathrm{MC}}_{\gamma,\mathrm{gas}}$	×	$\mathcal{E}_{\text{track}}^{\text{RD}}$

	Ω_i		ω		
	$5 \mathrm{cm} < R < 8.5 \mathrm{cm}$	$95 \mathrm{cm} < R < 145 \mathrm{cm}$	$8.5 \mathrm{cm} < R < 13 \mathrm{cm}$	$72 \mathrm{cm} < R < 95 \mathrm{cm}$	
V ⁰ finder	2.74 %	2.9%	2.2%	1.83%	
Generator	0.16%	2.9%	3.2 %	0.62 %	
$p_{\mathrm{T,min}}$	Negligible	Negligible	Negligible	Negligible	
$\sigma_{ m sys}$	2.74%	4.1%	3.8%	1.93%	

R interval	R range (cm)	Ω_i	$\sigma_{ m stat}$ %	$\sigma_{ m sys}$ %	$\sigma_{ m total}$ %
0	0–1.5	0.9859	1.2	-	-
1	1.5–5	1.177	0.42	-	-
2	5-8.5	1.240	0.36	2.7	2.8
3	8.5-13	1.238	0.42	0.77	0.9
4	13–21	1.067	0.34	2.0	2.1
5	21-33.5	1.081	0.25	1.7	1.7
6	33.5-41	1.039	0.35	3.1	3.1
7	41–55	1.001	0.30	1.5	1.5
8	55-72	0.926	0.35	3.7	3.7
9	72–95	0.943	0.19	3.7	3.7
10	95-145	0.975	0.62	4.1	4.1
11	145–180	0.932	0.89	1.4	1.6
average	5–180	1.04	0.312%	2.5%	2.5%

Data-driven precision determination of the material budget in ALICE

arxiv: 2303.15317

$π^0$,η: Pb-Pb at √s_{NN} = 2.76, 5.02 TeV

10 $\frac{\mathsf{d}^2 \mathsf{N}_{\pi^o, \eta}}{\overset{0}{\mathsf{p}_{\mathsf{T}}} \mathsf{d} \overset{0}{\mathsf{p}_{\mathsf{T}}}} (\mathsf{GeV}/c)^2$ SHM - PRC 90, 014906 (2014) 10⁵ 20-50% 0–10% - NEQ -- EQ -- EQ - NEQ PRC 85, 064907 (2012) EPOS 0-10% EPOS 20-50% Nev ង 10 10^{-2} 10⁻³ 10 10⁻⁵ 10-6 Pb–Pb, $\sqrt{s_{_{\rm NN}}} = 2.76 \text{ TeV}$ **•**η, 0–10% $\Box \pi^0$, 0–10% × 2.10⁻¹ 10^{-7} $\Box \pi^0$, 20–50% n, 20–50% 10-8 10 *p*_{_} (GeV/*c*) ALI-PUB-143585

EPJ C 74 (2014); PRC98, 044901 (2018)

First η measurement in Pb-Pb at the LHC

Direct photon R_y in Pb – Pb $\sqrt{s_{NN}}$ = 2.76 TeV

Combination of PCM(2011) with Ω_i +PHOS(2010)

Significant excess for $p_T > 1 \text{ GeV}/c$

Low p_T : thermal radiation High p_T : prompt photons

Inclusive γ and R_{γ} in Pb-Pb 2.76 TeV

T_{eff} from non-prompt photons

Direct photon R_y in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

At low p_T : R_y is close to 1 \rightarrow small thermal contribution

For $p_{\rm T}$ > 2-3 GeV/c:

• Excess which can be attributed to pre-equilibrium and prompt (hard scattering) photons

QGP thermal emission: Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

ALI-PREL-524126

a.marin@gsi.de, HP2023 (Aschaffenburg)

Direct photon spectra in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

$$N_{\gamma,\text{dir}} = N_{\gamma,\text{inc}} - N_{\gamma,\text{dec}} = (1 - \frac{1}{R_{\gamma}}) \cdot N_{\gamma,\text{inc}}$$

Upper limits (90% CL) given where γ_{dir} consistent with 0

Bose-Einstein γγ correlations in Pb-Pb collisions

0.3

0.3

Direct *γ* **in pp collisions**

Combination of several reconstruction techniques via BLUE method. Theoretical NLO pQCD prediction plotted as

$$R_{\gamma}^{pQCD} = 1 + N_{coll} \frac{\gamma_{pQCD}}{\gamma_{decay}}$$

No significant excess observed at low p_T . About 1 – 2 σ deviation from unity for pT > 7 GeV/c

Direct *γ* **in pPb collisions**

No significant excess observed at low p_{T} . Accuracy is not yet sufficient to confirm/exclude thermal radiation in p-Pb collisions