Measuring pressure anisotropy of the quark-gluon plasma through photon polarization

Siggi Hauksson
IPhT, CEA-Saclay

Hard Probes 2023, Aschaffenburg, Germany March 30th 2023

In collaboration with C. Gale.

Introduction

- QGP has pressure anisotropy at early and intermediate times, $P_{L}<P_{T}$.
- Due to competition between longitudinal expansion and interaction.
- Photon and dileptons emitted at this stage.
- Anisotropy of medium makes the photons and dileptons polarized.

[Bernhard et al. (2019)]

[Gelis (2015)]
- This polarization is a direct measure of pressure anisotropy.
- Difficult measurement.

Photon and dilepton polarization

- Medium expansion leads to anisotropy in quark momentum, $\langle | p_{z}| \rangle<\langle | p_{x}| \rangle,\langle | p_{y}| \rangle$

$$
f(\mathbf{p})=\sqrt{1+\xi} f_{\mathrm{eq}}\left(\sqrt{\mathbf{p}^{2}+\xi p_{z}^{2}}\right), \quad \xi>0
$$

- Gives polarization to emitted photons:
- Coupling between photon and charge current $\left(A^{0}=0\right): \boldsymbol{\epsilon} \cdot \mathbf{j}$
- Anisotropy in \mathbf{j} gives net polarization $\boldsymbol{\epsilon}$.
- 2-to-2 production: [Baym, Hatsuda (2015)]
- Other suggestions for sources of polarization:
- Magnetic fields in holography: Wu, Yang (2013); Yee (2013); Avila et al. (2021)

- Vorticity: Dong, Lin (2022)
- Chiral magnetic effect etc: Tang, Wang (2016); Mamo, Yee (2013); Ipp et al. (2008)
- Want full LO calc. in expanding medium.

Photon and dilepton production in pQCD

- Photon processes at leading order:

Aurenche et al. (1998)

Arnold et al. (2001)

[Baier et al. (1992)]

[Kapusta et al. (1991)]

- Here focus on bremsstrahlung and pair annihilation.
- As important as 2 -to-2 scattering for photons.
- Want to establish sign and size of effect.
- NLO for low-virtuality dileptons but high gluon occupancy can make more important.
(For polarization of LO dileptons, see e.g. [Baym, Hatsuda, Strickland (2017);
Shuryak (2010); Speranza, Jaiswal, Friman (2018); Coquet et al. (2021))

Photon production through bremsstrahlung

- Transverse kicks from medium bring quark off-shell: it radiates collinearly.
- During emission of photon can have arbitrarily many medium kicks.
- In equilibrium $\left(\zeta=k /\left(p_{x}+k\right)\right.$): Arnold, Moore, Yaffe (2001); Aurenche, Gelis, Zaraket (2002)
$k \frac{d \Gamma_{z}}{d^{3} k} \sim \alpha_{E M} \int d p^{x} n_{f}\left(k+p^{x}\right)\left[1-n_{f}\left(p^{x}\right)\right] \frac{k}{p_{x}^{2}\left(k+p_{x}\right)} P_{q \rightarrow q \gamma}(\zeta) \operatorname{Re} \int d^{2} p_{\perp} \mathbf{p}_{\perp} \cdot \mathbf{f}$,
$2 \mathbf{p}_{\perp}=i \delta E \mathbf{f}\left(\mathbf{p}_{\perp}\right)+\int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \mathcal{C}\left(\mathbf{q}_{\perp}\right)\left[\mathbf{f}\left(\mathbf{p}_{\perp}\right)-\mathbf{f}\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)\right], \quad \delta E=\frac{k}{2 p(p+k)}\left[p_{\perp}^{2}+m_{\infty}^{2}\right]$

$$
\mathcal{C}\left(\mathbf{q}_{\perp}\right)=g^{2} C_{F} T\left(\frac{1}{q_{\perp}^{2}}-\frac{1}{q_{\perp}^{2}+m_{D}^{2}}\right)
$$

Polarization in bremsstrahlung

- Polarization comes from interplay between hard vertex and momentum broadening.
- Hard vertex:
z-polarized $\frac{(2-\zeta)^{2}}{\zeta} p_{z} \bar{p}_{z}+\zeta p_{y} \bar{p}_{y}$
y-polarized $\quad \zeta p_{z} \bar{p}_{z}+\frac{(2-\zeta)^{2}}{\zeta} p_{y} \bar{p}_{y}$

- Kicks from medium needed to bring \mathbf{p} to $\overline{\mathbf{p}}$.
- If more momentum broadening in z-direction get net z-polarization.

Momentum broadening

- Strong anisotropy at early times, $\widehat{q}_{z}>\widehat{q}_{y}$. $\widehat{q}_{z}:=d\left\langle p_{z}^{2}\right\rangle / d t$
- For photons need microscopic collision kernel,
$\mathcal{C}\left(\mathbf{q}_{\perp}\right)=g^{2} C_{F} \int \frac{d q^{0} d q_{x}}{(2 \pi)^{2}}\left\langle\left\{A^{\mu}, A^{\nu}\right\}\right\rangle(Q) v_{\mu} v_{\nu} \delta(v \cdot Q)$
[See e.g.: Aurenche, Gelis, Zaraket (2002); Caron-Huot (2008); Panero, Rummukainen, Schaefer (2014)]
- Difficult to evaluate out of equilibrium due to instabilities. [E.g. Hauksson et al. (2021)]
- Will use model

$$
\begin{aligned}
& \mathcal{C}\left(\mathbf{q}_{\perp}\right)=g^{2} C_{F} T\left(\frac{1}{q_{\perp}^{2}}-\frac{1}{q_{\perp}^{2}+m_{D}^{2}\left(\phi_{\mathbf{q}}\right)}\right) \\
& m_{D}^{2}\left(\phi_{\mathbf{q}}\right)=\left(1-\frac{2 \xi}{3}\right) m_{D 0}^{2}+\xi m_{D 0}^{2} \cos ^{2} \phi_{\mathbf{q}}
\end{aligned}
$$

[Boguslavski, Kurkela, Lappi, Lindenbauer, Peuron (2023)]

Numerical solution

- Rate for e.g. z polarization is [Hauksson, Jeon, Gale (2017)]

$$
\begin{aligned}
& k \frac{d \Gamma_{z}}{d^{3} k} \sim \alpha_{E M} \int d p^{x} n_{f}\left(k+p^{x}\right)\left[1-n_{f}\left(k+p^{x}\right)\right] \frac{k}{p_{x}^{2}\left(k+p_{x}\right)} \\
& \times\left[\frac{(2-\zeta)^{2}}{\zeta} \operatorname{Re} \int d^{2} p_{\perp} p_{z} \mathbf{f}_{z}+\zeta \operatorname{Re} \int d^{2} p_{\perp} p_{y} \mathbf{f}_{y}\right] \\
& 2 \mathbf{p}_{\perp}=i \delta E \mathbf{f}\left(\mathbf{p}_{\perp}\right)+\int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \mathcal{C}\left(\mathbf{q}_{\perp}\right)\left[\mathbf{f}\left(\mathbf{p}_{\perp}\right)-\mathbf{f}\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)\right]
\end{aligned}
$$

- Developed new algorithm to solve 2D integral equation.
- Earlier 1D methods: [E.g. Aurenche, Gelis, Zaraket (2002)
- Transform to impact parameter space, do multipole expansion and solve as boundary value problem.

Results

- Calculate up to $\xi=1.0$, i.e. $P_{L} / P_{T} \sim 0.3$.
- Polarization quantified with $r=\frac{R_{z}-R_{y}}{R_{z}+R_{y}}, R_{z}=k d \Gamma_{z} / d^{3} k$.

- Increase in spectrum due to $f(\mathbf{p})=\sqrt{1+\xi} f_{\text {eq }}\left(\sqrt{p^{2}+\xi p_{z}^{2}}\right)$
- Polarization changes signs around $k \sim 4.5 \Lambda$.

Results

- Pair annihilation and bremsstrahlung give opposite polarization.

- Pair annihilation: $\bar{u}\left(P_{1}\right) \not P_{1} u\left(P_{2}\right)=\bar{u}\left(P_{1}\right) \not P_{2} u\left(P_{2}\right)=0$ so $\left(P_{1}-P_{2}\right)_{\mu} \bar{u}\left(P_{1}\right) \gamma^{\mu} u\left(P_{2}\right)=0$ and no contribution in z-direction.
- z-polarization $(r>0)$ wins out as more photons there.
- Same polarization as from 2-to-2 scattering.

Similar effects for jets

- Similarly, get polarization of jet gluons in anisotropic medium. [Hauksson, Iancu (2023)]

- Have studied how polarization is transmitted at each vertex.
- Net polarization tracks anisotropy of medium.
- Might give elliptical shape of jets after hadronization.

Conclusions

- Longitudinal expansion of plasma gives rise to photon polarization.
- Photon polarization thus works as a measure of pressure anisotropy in medium.
- Have for first time evaluated all LO diagrams in expanding medium.
- Get net polarization along beam axis.
- Some cancellation takes place but get polarization of a few percent.

Evolution of polarization

- Consider total evolution of jet in glasma brick with constant $G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)$.
- $\tau=\frac{\alpha_{s} N_{c}}{\pi} \sqrt{\frac{\widehat{q}}{E}} t$

$$
\begin{aligned}
\frac{d D_{\text {tot }}(x, \tau)}{d \tau} & =\int_{x}^{1} d z \mathcal{K}_{0}(z) \sqrt{\frac{z}{x}} D_{\text {tot }}\left(\frac{x}{z}, \tau\right)-\int_{0}^{1} d z \mathcal{K}_{0}(z) \frac{z}{\sqrt{x}} D_{\text {tot }}(x, \tau) \\
\frac{d \widetilde{D}(x, \tau)}{d \tau} & =\int_{x}^{1} d z \mathcal{M}_{0}(z) \sqrt{\frac{z}{x}} \widetilde{D}\left(\frac{x}{z}, \tau\right)-\int_{0}^{1} d z \mathcal{K}_{0}(z) \frac{z}{\sqrt{x}} \widetilde{D}(x, \tau) \\
& +\int_{x}^{1} d z \mathcal{L}_{0}(z) \sqrt{\frac{z}{x}} D_{\text {tot }}\left(\frac{x}{z}, \tau\right) .
\end{aligned}
$$

$$
\mathcal{K}_{0}(z) \approx \frac{1}{z^{3 / 2}(1-z)^{3 / 2}}, \quad \quad \mathcal{M}_{0}(z) \approx z^{2} \mathcal{K}_{0}(z), \quad \quad \mathcal{L}_{0}(z) \approx G\left(\widehat{q}_{z} / \widehat{q}_{y}\right)(1-z)^{2} \mathcal{K}_{0}(z)
$$

- $D_{\text {tot }}=x \frac{d\left(N_{z}+N_{y}\right)}{d x}$ is energy spectrum, $\widetilde{D}=x \frac{d\left(N_{z}-N_{y}\right)}{d x}$ is polarization.
[Equation for $D_{\text {tot }}$: Blaizot, lancu, Mehtar-Tani (2013); Blaizot, Mehtar-Tani (2015); Fister, lancu (2014); lancu, Wu (2015); Escobedo, lancu (2016). See also e.g. Mehtar-Tani, Schlichting (2018), Adhya, Salgado, Spousta, Tywoniuk (2021)]

